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Using Machine Learning to Address Customer Privacy Concerns:

An Application with Click-stream Data

Abstract: The ever-increasing volume of consumer data provide unprecedented opportuni-

ties for firms to predict consumer behavior, target customers, and provide customized service.

Recent trends of more restrictive privacy regulations worldwide, however, present great chal-

lenges for firms whose business activities rely on consumer data. We address these challenges

by applying the recently developed federated learning approach - a privacy-preserving ma-

chine learning approach that uses a parallelized learning algorithm to train a model locally

on each individual user’s device. We apply this approach to data from an online retailer

and train a Gated Recurrent Unit recurrent neural network to predict each consumer’s click-

stream. We show the firm can predict each consumer’s activities with a high level of accuracy

without the need to store, access, or analyze consumer data in a centralized location, thereby

protecting their sensitive information.

Keywords: Privacy, Machine Learning, Federated Learning, Gated Recurrent Unit, Click-

stream data
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1 Introduction

As consumers constantly generate massive amounts of data, unprecedented opportunities

exist for firms to harness the power of individual-level consumer data to predict their behavior

and to target and customize service to consumers. The rapid growth of the use of consumer

data, however, has also increased debate surrounding the protection of consumers’ privacy.

The Privacy Rights Clearinghouse reports that 8,909 data-breach incidents have been made

public since 2005, compromising billions of sensitive personal records.1 The scope and the

extent of data breaches are alarming. For instance, millions of users were affected by the 2017

Equifax data-breach incident that exposed sensitive personal information such as driver’s

license numbers, credit history, and even social security numbers.2

Consumers have expressed serious concerns pertaining to how firms handle consumers’

data and protect their privacy. According to an online survey conducted by IBM in 2018,

78% of U.S. consumers said that a company’s ability to keep consumer data private is

“extremely important,” and only 20% responded that they “completely trust” the companies

they interact with to keep their private data safe.3 Another survey by Consumer Reports

finds that in the aftermath of Facebook’s Cambridge Analytica scandal in 2018, in which

the British consulting company deceitfully acquired and used millions of Facebook users’

data, 70% of Facebook users have changed their behavior, taking more precautions with

their posts, revising privacy settings, and turning off location tracking.4 These examples

show that with growing concerns over privacy issues, consumers have become skeptical of

firms’ promises about the use and protection of consumers’ personal data. As a result, firms

are now facing a crisis of trust and confidence from their consumers.
1Source: https://www.privacyrights.org/data-breaches, accessed on December 1, 2018.
2Source: https://arstechnica.com/information-technology/2018/05/equifax-breach-exposed-

millions-of-drivers-licenses-phone-numbers-emails/, accessed on December 1, 2018.
3Source: http://analytics-magazine.org/survey-finds-deep-consumer-anxiety-over-data-pr

ivacy-and-security/, accessed on November 25, 2018.
4Source: https://www.cmswire.com/information-management/how-facebooks-cambridge-analyti

ca-scandal-impacted-the-intersection-of-privacy-and-regulation/, accessed on November 21,
2018.
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Governments are also concerned with the adequacy of data security and protection of

consumer privacy implemented by companies. Accordingly, governments in many countries

are considering regulations that greatly restrict firms’ access, use, and sharing of consumer

data. One noteworthy privacy legislation is the European Union’s General Data Protection

Regulation (GDPR). With the goal of creating more consistent protection of consumer per-

sonal data across all EU nations, the GDPR went into effect on May 25, 2018, as the primary

law regulating how companies protect EU citizen’s personal data.5 Under GDPR, organi-

zations must obtain explicit consent from users in order to store users’ personal data, and

also have a legal obligation to inform users of the purpose of data collection and processing,

as well as of the identities of third parties with whom the data will be shared.6 Companies

that fail to comply with the GDPR are subject to costly penalties of up to €20m, or 4% of

a firm’s global turnover of the previous year (whichever is greater). Furthermore, note that

in addition to EU members, any company, regardless of its location, must comply with the

regulation if it markets goods and services to EU residents (known as “extra-territoriality”).

The impact of the GDPR thus exceeds the boundaries of EU and changes data-protection

requirements globally.

The GDPR is just the beginning - recent high-profile data breaches have further triggered

calls for more urgent and strict data-protection measures worldwide. For example, modeled

after the GDPR, the California Consumer Privacy Act of 2018 (CCPA) was recently passed

(June 2018) and will become effective in 2020. Much like the GDPR, the CCPA provides

consumers more control over their personal information by requiring California-based orga-

nizations to obtain explicit consent from users before sharing or selling consumer data to

third parties. India is also one step closer to having its own data-protection law. In July

2018, the Indian government published the draft of the Personal Data Protection Bill, which
5According to GDPR directive, “personal data” are defined as “any information relating to an identifiable

person who can be directly or indirectly identified by reference to an identifier. This definition provides for a
wide range of personal identifiers to constitute personal data, including name, identification number, location
data or online identifier, reflecting changes in technology and the way organizations collect information about
people.”

6Source: https://eugdpr.org/the-regulation/gdpr-faqs/, accessed on November 21, 2018.
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proposes a comprehensive data-protection framework and is similar to the GDPR in terms

of extra-territoriality and global-turnover-based penalties.

While offering more rights and protection to consumers, such strict regulations will in-

evitably limit firms’ ability to tailor their marketing activities and services to each individual

consumer. Not only will these regulations negatively affect the profitability of firms that rely

heavily on individual consumer data for prediction and targeting, but their impact on con-

sumer welfare is also ambiguous. Note that firms’ targeting activities often provide additional

value to consumers, for instance, through lower search costs or through a better match with

a product (e.g., Yao and Mela (2011), Anderson and Simester (2013)). Consequently, it is

unclear whether consumers will eventually be better off if firms stop exploring consumer

data under these new privacy policies. Therefore, it is imperative to find solutions that can

alleviate the potential negative side effects of restrictive privacy regulations, while preserving

data security.

In this paper, we show how machine learning approaches can achieve such objectives

by enabling firms to continue benefiting from the abundance of consumer data without

the need to store or access the data, hence mitigating the privacy concerns. In particular,

we demonstrate how firms may achieve accurate targeting without centralized storage or

access to the data, by building a Gated Recurrent Unit (Cho et al. (2014)) recurrent neural

network (RNN) under the Federated Learning algorithm (McMahan et al. (2017)). The

Gated Recurrent Unit (GRU, henceforth) recurrent neural network algorithm can achieve a

highly accurate prediction about a consumer’s next action conditional on what she has done

or experienced in the past (e.g., a firm can predict which movie a consumer is more likely to

watch based on her watch history and which movies are recommended to her). The Federated

Learning (FL, henceforth) algorithm stores the private data locally on each user’s device,

while the model parameters are also updated locally on that device using those data. During

the training, the firm does not need to access the private data directly, thereby keeping them

safe. Only those locally updated parameters from consumers’ devices are communicated to

4



the central server (firm). Upon receiving those updated parameters from consumers, the

firm aggregates them to update a “shared” model.7

The FL approach has a distinct advantage over other methods devised to protect pri-

vacy. Even if mostly anonymized, datasets that are stored and accessible at the firm’s data

center can still put consumer privacy at risk (Sweeney (2000)). For instance, consider the

Differential Privacy algorithm (Dwork et al. (2006)) that Apple has deployed since 2016 as

a key feature to protect consumer identity. When Apple collects and stores user data, it

adds statistical noise to a user’s profile and activities to mask the user’s identity. A study

by Tang et al. (2017) finds, however, that Apple’s privacy-breach risk still exceeds the level

that the research community typically considers acceptable. By contrast, the FL trains the

model on each consumer’s device locally, and therefore greatly reduces such risks because

the firm never transfers, accesses, or stores consumers’ personal data. The only information

that is transmitted between the firm and consumers is the locally updated parameters that

are necessary to improve the shared model.

Another attractive property of FL, which also distinguishes it from other distributed

learning algorithms, is that it is robust to non-IID and highly unbalanced datasets. The

data stored on any given consumer’s device are almost certainly not representative of the

population distribution, and the amount of data stored will vary substantially based on

the consumer’s usage of the device and the firm’s service. While much of the previous

research on distributed learning does not consider unbalanced and non-IID datasets, the FL

approach works relatively well on these types of data by repeatedly averaging locally updated

parameters.

Furthermore, the FL is communication efficient. One major constraint in the design of

large-scale distributed learning algorithms is the communication cost. In a typical distributed

learning setting where the data are stored in a decentralized manner over a cluster of devices
7In the machine learning literature, “parameters” and “weights” are often used interchangeably. We

use “parameters” to distinguish our meaning from “weights” used in weighted-averaging calculations, which
appear later in the paper.
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(nodes), communication costs are considerable. The development of an efficient distributed

learning algorithm that can minimize the number of communication iterations among nodes

is therefore an important issue. In the FL setting, the network and power connection of a con-

sumer’s device make communication costs the principal constraint. McMahan et al. (2017)

demonstrate how two components of the FL approach can substantially reduce the number of

communication rounds necessary for achieving a target accuracy level. The two components

are (1) increasing parallelism, so that more consumers do computation independently dur-

ing each communication round, and (2) increasing computation on each consumer’s device,

so that multiple updates are performed at the consumer level during each communication

round.

To demonstrate the applicability of the proposed approach in a general marketing setting,

we train the GRU with the FL algorithm using a highly unbalanced and non-IID consumer

browsing dataset at an online retailer, with the objective to predict a consumer’s click-

stream. To establish a benchmark, we also train the GRU using a standard centralized

learning approach. In contrast to the FL algorithm, the centralized learning requires the

firm to store, access, and train all consumers’ data collectively at a data center. We show

the prediction accuracy of the proposed approach is comparable to that of the centralized

learning method. Consequently, this approach allows firms to target consumers with high

accuracy without compromising the security of personal data.

The rest of this paper is structured as follows: In the following section, we briefly discuss

related literature. Section 3 gives a brief overview of the FL algorithm, as well as the GRU.

In Section 4, we apply the FL algorithm with the GRU to a practical marketing problem,

training a model to predict each consumer’s next-clicked item using an online retailer’s click-

stream data. Section 5 concludes.
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2 Related Literature

This paper adds to a stream of literature on consumer privacy. Hann et al. (2003) study the

trade-off that consumers face between the benefits and costs of providing personal informa-

tion. They find the benefits such as monetary rewards and future convenience significantly

affect consumers’ preferences over websites with various privacy policies. They also quantify

individuals’ valuation of protection of personal information, and find it is worth between

$30.49 and $44.62. Tucker (2014) shows that increasing users’ perception of more control

over their private information increases the effectiveness of behavioral targeting. Leveraging

the implementation of European Union’s opt-in tracking policy as a natural experiment,

Goldfarb and Tucker (2011) demonstrate that display advertising becomes far less effective

(65% reduction in effectiveness on average) in terms of stated purchase intent as a result of

the privacy regulation. In the context of the online display ad industry, Johnson (2013) finds

that reduced targeting due to stricter privacy policies decreases advertiser surplus, and that

publishers’ revenues also decrease as a result. More recently, Rafieian and Yoganarasimhan

(2018) use machine learning techniques to quantify the value of targeting information, specifi-

cally, the relative importance of contextual information (based on the content of the website

and hence privacy preserving) versus behavioral information (based on user-tracking and

thereby jeopardizing privacy). They find that targeting consumers based on behavioral in-

formation is more effective than targeting based on contextual information, and that strict

privacy regulations that ban user-tracking substantially reduce the value of behavioral tar-

geting. For a more comprehensive review and discussion on big data and consumer privacy,

see Jin (2018).

This paper also relates to literature on privacy-preserving machine learning (Barni et al.

(2011), Xie et al. (2014), Rubinstein et al. (2012), Sarwate and Chaudhuri (2013), Duchi et al.

(2012), Mohassel and Zhang (2017)). Privacy-preserving deep learning has been an active

research area in recent years. The most relevant study in this domain is Shokri and Shmatikov

(2015), who propose a method based on Differential Privacy (DP) for collaborative deep
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learning, where each party asynchronously trains a neural network locally and selectively

shares only a subset of parameters with other parties. They do not, however, take into

account the non-IID and unbalanced properties of the data. McMahan et al. (2017) advance

this literature by developing the FL algorithm that is robust to unbalanced and non-IID data

distributions that are the defining characteristics of data stored in each consumer’s device.

This distributed learning technique offers the firm as well as consumers the benefits of the

shared model trained from rich data, without having to compromise the security of personal

data. In our paper, we further combine the FL approach with the GRU approach. We use

the model to predict consumer click-streams and demonstrate its accuracy and applicability

in marketing.

This paper also belongs to the literature that explores path-tracking and click-stream data

to study consumers’ decision-making along the purchase funnel (e.g., Moe and Fader (2004),

Montgomery et al. (2004), Park and Fader (2004), Hui et al. (2009)). Unlike typical brick-

and-mortar data, which only record consumers’ final transactional events, path-tracking and

click-stream data can accurately capture the entire shopping path of a consumer in a com-

plete and timely manner. As shown in recent studies, insights obtained from such data can

provide a better understanding of consumers’ search behavior and market competition, as

well as enable managers to optimize their marketing efforts (e.g., Bronnenberg et al. (2016),

Chen and Yao (2017), Seiler and Yao (2017), Yao et al. (2017)). Tracking and storing path

and click-stream information, however, also intensifies privacy concerns. Even after the data

are anonymized, the empirical patterns embedded in the data can reveal a substantial amount

of personal information (Valentino-DeVries et al. (2018)). Our paper demonstrates the pos-

sibility of analyzing path-tracking and click-stream data without jeopardizing consumers’

privacy.
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3 Model

In this section, we provide a brief description of the FL as well as the GRU algorithms. We

first describe the FL’s process of model distribution and aggregation executed by the central

server, and then proceed to describe the GRU algorithm that trains the model locally at

each individual consumer’s device using personal data.

3.1 Server

The data are partitioned over K consumers, with nk number of observations for consumer

k, k = 1, ..., K. Let Pk = {1, ..., i, ..., nk} be the set of indices for consumer k’s data points;

that is, nk = |Pk |. At round τ of communication between consumer devices and the central

server, a fraction C ∈ (0, 1] of all consumers are randomly selected to form a set Sτ (i.e., only

a fraction C of consumers are selected during each communication round for computational

efficiency). The model parameters of the current round, Θτ , are distributed from the central

server to all consumers who have been selected to be included in this set. Next, each

consumer k’s device computes the average gradient gk on her local data at the current

parameters Θτ . The average gradient gk can be written as gk(Θτ ) = ∇Lk(Θτ ), where

Lk(Θτ ) = 1
nk

∑
i∈Pk li(Θτ ), and li(Θτ ) is the loss function of the prediction on observation i.

The parameters are locally updated as

Θk
τ+1 ← Θτ − ηgk, (1)

where η is a learning rate. In other words, in parallel, each consumer locally takes one step of

gradient descent at the current parameters using her local data. The resulting parameters,

Θk
τ+1, ∀k ∈ Sτ , are sent to the central server. The central server then takes a weighted

average of parameters received from the consumers and updates the shared central model

Θτ+1 ←
∑

k∈Sτ
nk
nSτ

Θk
τ+1, where nSτ is the total number of observations across all consumers

in Sτ . This process repeats until convergence.
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Sometimes, increasing local training epochs may further improve the communication

efficiency (i.e., reduce the number of communication rounds necessary for convergence).8

Specifically, during round τ of communication, instead of updating the local parameters

only once at each consumer’s device, it is possible to modify the procedure by increasing the

number of local training epochs to E > 1 times before communicating to the central server.

Let e be the index of local training epochs. Then consumer k’s parameters at round τ are

updated as

Θk,e+1
τ+1 ← Θk,e

τ+1 − ηgk(Θ
k,e
τ+1)

e = 1, 2, ..., E

with Θk,1
τ+1 = Θτ and Θk

τ+1 = Θk,E+1
τ+1 .

The improvement in communication efficiency through this additional step, however, is not

guaranteed. The improvement in efficiency may depend on characteristics of data that are

stored on each consumer’s device (e.g., sparsity). As we show in our application in Section

4 (as well as shown in McMahan et al. (2017)), the additional local training epochs may

not necessarily enhance the speed of neural network convergence. Accordingly, in practice,

firms need to fine-tune the number of local epochs to achieve a high level of communication

efficiency.

3.2 Consumer k

At each consumer’s node, we employ the GRU to predict each consumer’s next-clicked item

during a browsing session. The GRU solves the vanishing gradient problem of the vanilla

RNN using an “update gate” vector and a “reset gate” vector. These two gates determine

how much information from a consumer’s previous clicks needs to be passed along to make
8In the machine learning literature, an “epoch” is defined as one round of passing all data forward and

backward through the network. Because the training happens on each individual consumer’s device and all
her data are passed through the local neural network, each training iteration can be viewed as one local
epoch.
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predictions about future clicks. They can be trained to retain information from multiple

steps back or to ignore the information that is irrelevant for the prediction. For notational

simplicity, we omit the indices k and τ that index a specific consumer and a communication

round, respectively.

During a specific browsing session, a consumer makes T ≥ 2 clicks. Suppose J alternative

products are available at each session. At step t (t = 1, 2, ..., T ) of the browsing session, the

consumer can choose one product to click. Let matrix X = [x1, x2, ..., xT ] be the sequence

of vectors representing the consumer’s click-stream in a given browsing session. xt ∈ RJ×1

is a J-dimensional vector whose j-th element equals 1 if a consumer clicks on product j at

step t, and 0 otherwise.

Given the sequence [x1,x2..., xt] up to step t, t = 1, 2, ..., T − 1, our objective is to predict

xt+1, the click vector at step t + 1. At each t, t = 1, 2, ..., T − 1, the hidden state of the

previous step, ht−1 ∈ RD×1,9 and the input xt are passed to the gated recurrent unit.10 The

gated recurrent unit in turn updates the current hidden state ht (t = 1, 2, ..., T − 1) using

the following architecture

zt = σ([Wzxt + Uzht−1 + bz) (2)

rt = σ(Wrxt + Urht−1 + br) (3)

ĥt = tanh(Whxt + Uh(ht−1 � rt) + bh) (4)

ht = zt � ht−1 + (1− zt)� ĥt, (5)

where zt and rt are update and reset gates, respectively; ĥt and ht are the current memory

and the hidden state, respectively; σ(·) is the sigmoid function; tanh(·) is a hyperbolic

tangent function; and � denotes an element-wise multiplication. Wz,Wr,Wh, Uz, Ur, Uh are

the matrices, and bz, br, bh are the vectors of parameters to be learned. The intuition of the

GRU is as follows:
9D × 1 is the dimension of the hidden state vector.

10Note h0 is a vector with all elements equal 0.
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Update gate (equation 2): The update gate zt allows the model to control how much

of the information from previous steps (which is summarized in ht−1) should be carried

forward to the current hidden state ht. The update gate helps the model remember long-

term information.

Reset gate (equation 3): Despite their identical formula, the reset gate rt is different

from the update gate zt. The difference comes from the parameter matrices and vectors, and

more importantly, the gate’s usage. The reset gate rt allows the model to drop any previous

information that is irrelevant for future predictions.

Current memory (equation 4): The current memory ĥt consolidates the new input xt

(the click vector in step t) with the previous hidden state ht−1. The latter holds information

from the consumer’s click activities in previous t− 1 steps.

Hidden state (equation 5): The hidden state ht uses the update gate as the weight to

store relevant information from the previous hidden state ht−1 and the current memory ĥt .

The hidden state ht is then used to calculate the prediction of the click vector of step

t+1, x̂t+1. The prediction x̂t+1 takes the form of a J-dimensional vector, whose j-th element

is the probability of the consumer clicking product j. Specifically,

x̂t+1 =

[
exp(ot,1)∑J
j=1 exp(ot,j)

, · · · , exp(ot,J)∑J
j=1 exp(ot,j)

]′
(6)

ot = [ot,1, ot,2, ..., ot,J ]′ (7)

= V ht + bv, (8)

where V and bv are another set of matrix and vector of parameters to be learned.
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Finally, we use the cross-entropy error as the loss function, which is defined as

L =
1

T − 1

T−1∑
t=1

xt+1 · log(x̂t+1). (9)

The full set of model parameters to be learned are

Θτ = {Wu, Uu, bu,Wr, Ur, br,Wh, Uh, bh, V, bv}. (10)

4 Application: Click-stream Prediction

We apply the FL algorithm to a click-stream dataset from an online retailer, and train the

GRU locally at each consumer’s node using only that consumer’s personal data. Our goal is

to show how the FL algorithm can fit into a broad marketing framework. In particular, we

combine the FL with the GRU to test the performance of the prediction of each consumer’s

click-stream within a browsing session. As discussed in Hidasi et al. (2016), the prediction

of the next-clicked product or a set of products in a customer’s click-stream often become

the basis for a website’s recommendation system. A well-calibrated recommendation system

in turn may enhance the conversion rate of the online retailer. Consequently, accurately

predicting a consumer’s click-stream within a browsing session has substantial managerial

implications. To evaluate the accuracy of the prediction, we focus on the predicted proba-

bility on the next-clicked product. In particular, we use “Recall@K” averaged over all clicks

of all consumers as our evaluation metric of prediction accuracy. Recall@K is widely used in

the machine learning literature for predicting click-through rates (Hidasi and Tikk (2016)).

For our application, the consumer clicks on only one product at each step. In this case,

Recall@K is a dummy variable. More specifically, for a given prediction at step t, Recall@K

equals 1 if the list of K products with the highest predicted click probabilities includes the

product that the consumer actually clicks. Recall@K equals 0 if the actually clicked product

does not appear in the K-product list.
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Table 1: Summary Statistics of Training Dataset
Training Set

Mean SD Med Min Max
Number of sessions per customer 1.89 2.55 1 1 52
Number of clicks per customer 28.43 137.89 9 2 7,332
Number of clicks per session 15.03 49.68 5 2 1,844
Number of unique products clicked per customer 6.34 9.85 4 1 217
Number of unique products clicked per session 4.40 4.55 3 1 88
Number of customers 3,632
Number of sessions 6,873
Number of clicks 103,270

Table 2: Summary Statistics of Test Dataset
Test Set

Mean SD Med Min Max
Number of sessions per customer 1.85 2.12 1 1 28
Number of clicks per customer 26.93 73.44 9 2 1,212
Number of clicks per session 14.58 42.35 5 2 1,008
Number of unique products clicked per customer 6.47 8.91 4 1 125
Number of unique products clicked per session 4.39 4.23 3 1 43
Number of customers 908
Number of sessions 1,677
Number of clicks 24,454

We use a dataset from a large Chinese online liquor retailer, which contains a set of 5,711

randomly selected customers shopping in the wine category on the website during July 2016.

For each customer, we observe her individual-level click-stream at the website. During the

observation window, these 5,711 customers initiate 13,154 browsing sessions on the website.11

During these sessions, they make 132,328 clicks on 1,660 products.

On average, each product appears in approximately 275 sessions, but with a large vari-

ance. Some unpopular products only appear once in browsing sessions across customers,

while the most popular product appears in 1,177 sessions. We aggregate unpopular prod-

ucts that appear in less than five sessions into one composite good. There are 798 such

products, and they constitute only 2.04% of total clicks in the data. We also drop sessions

in which a customer makes only one click, because our objective is to predict the next-
11A session ends when the customer closes the website’s browser window/tab.
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clicked item during the browsing session. As a result, we lose 4,604 observations (clicks)

after dropping those sessions.

Our final sample consists of 127,724 clicks, 4,540 customers, 8,550 sessions, and 863

products (862 products and one composite good). On average, we have 1.89 sessions per

customer, each session consists of 15 clicks, each customer has 28 clicks, and each customer

clicks on 4.1 unique products per session and 6.37 unique products in total.

We randomly select 80% of unique customers for training and use the remaining 20% as

a test set to calibrate the out-of-sample prediction accuracy. Our training dataset contains

103,270 clicks, 3,632 customers, and 6,873 sessions. Our testing data consist of 24,454 clicks,

908 customers, and 1,677 sessions. Note that due to our random assignment of consumers

into training/test sets, the total number of unique products clicked vary across the two

groups of consumers, even though they face the same set of alternative products. Summary

statistics of the training set and the test set are reported in Table 1 and Table 2, respectively.

Each shopping session of a consumer forms a separate sequence. That is, if any of

the consumer’s sessions ends, we reset the appropriate hidden state. We fix the size of

the hidden states to 100 and let each session of a consumer constitute a minibatch (6,783

sessions/minibatches in total in the training set). The full model has 376,363 parameters to

learn. For optimization of the loss function, we use the Adam algorithm with squared-root

decay of learning rates.12 To establish a benchmark, we also train and test the GRU using

the centralized learning approach, that is, standard stochastic gradient descent on the full

training set, where we use the same train/test split as in the FL setting, again with each

session forming a minibatch. For computational efficiency, we choose C = 0.2; that is, 20%

of randomly selected consumers work independently during each communication round. We

also show the results obtained from setting C = 0.1 for comparison. We also vary the level

of E, the number of local training epochs on each consumer’s device using her local data
12For centralized learning, we set the learning rate η to 3×1e−4. For FL, η is set to 5 when the sampling

rate C = 0.2 and the number of local training epoch E = 1; η is set to 3.3 when C = 0.2 and E = 2; η is set
to 1.2 when C = 0.1 and E = 1. We trained over a wide range of learning rates, and these performed the
best in terms of speed of convergence.
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Table 3: Prediction Accuracy and Communication Rounds
Model C E Recall@1 Communication rounds
Centralized Learning-GRU - - 0.60 -
Federated Learning-GRU 0.1 1 0.43 8,287
Federated Learning-GRU 0.2 1 0.53 555
Federated Learning-GRU 0.2 2 0.52 620

before communicating to the central server.

Table 3 reports the out-of-sample prediction accuracy as measured by Recall@1 averaged

over all predicted clicks. We present the prediction accuracy levels for FL-GRU with various

sampling rate C and local training epoch E. We also report the prediction accuracy obtained

through the centralized learning approach as a baseline. When the sampling rate C = 0.2

and local training epoch E = 1, the FL achieves a prediction accuracy of 53%. That is,

when we train the GRU using the FL approach, with 53% probability, the product with the

highest predicted click probability is the actual product the consumer has clicked (out of 863

alternative products). The prediction accuracy obtained via the FL approach is comparable

to that of the centralized approach, with the FL approach achieving 88% of the baseline

prediction accuracy of the centralized approach.13 We want to emphasize that with the FL

approach, the central server/firm has never stored, accessed, or directly analyzed individual

consumer data. Hence, the accuracy level of the FL is fairly impressive.

Computational costs are minimal in the FL setting because the size of the dataset stored

in any single device is small while modern devices have fast processors. By contrast, com-

munication costs are of major concern in distributed optimization settings such as the FL,

because information needs to be passed back and forth between the nodes and the central

server during the model optimization. In particular, limited upload bandwidth, network

connection (3G, 4G, WiFi), and power plug-ins (battery) hinder unlimited communication.

McMahan et al. (2017) show the following two elements of the FL may substantially reduce

the number of communication rounds necessary for convergence:
13i.e., 0.53/0.60 = 0.88.
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Figure 1: Test Accuracy for (i) C = 0.1, E = 1, (ii) C = 0.2, E = 1, and (iii) C = 0.2, E = 2.
Plot for C = 0.1, E = 1 is only shown up to 2,000 communication rounds in order to compare
the communication efficiency with the baseline of C = 0.2.

1. Increasing parallelism by increasing sampling rate: More consumers do computation

independently during each communication round, and

2. Increasing computation at each consumer’s node: Multiple updates are performed at

the consumer level during each communication round.

We report in Table 3 the minimum number of communication rounds necessary to achieve

a target accuracy of 40%. Figure 1 shows the learning curves, where the horizontal line

represents the target 40% accuracy level. The target accuracy is reached after 8, 287 com-

munication rounds when C = 0.1, E = 1. Increasing parallelism by setting C to 0.2 while

maintaining E = 1 drastically reduces the number of rounds to only 555.14 This figure also
14For the centralized learning, the GRU is trained on the full training set. The model parameters are

updated iteratively and sequentially for each minibatch (i.e., simple stochastic gradient descent). For the
centralized learning to achieve the 40% accuracy, 440 training epochs are necessary. One interesting analogy
about communication is that if each minibatch update is counted as a communication round, the total
number of communication rounds is 440 × 6, 873 = 3, 024, 120. This number is much higher than the 555
rounds needed for the FL approach, implying a substantial computational burden.
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includes results for C = 0.2, E = 2, which performs slightly worse than E = 1.15

5 Conclusion

Massive amounts of data generated by consumers provide a wealth of opportunities for firms

to accurately predict consumer behavior and to target and provide customized services,

thereby improving profitability as well as enhancing consumer experience. However, the

rapid growth of the use of consumer data, along with recent data-breach incidents, has raised

concerns regarding the protection of consumers’ privacy. Governments in several countries

are introducing regulations that greatly restrict firms’ access, use, and sharing of consumer

data. These regulations greatly restrict business activities of firms that rely heavily on

consumer data for their business activities. Therefore, firms must find solutions to mitigate

the impact of restrictive privacy regulations while keeping consumers’ private data safe.

In this paper, we show how machine learning approaches allow firms to continue benefiting

from vast amounts of consumer data without compromising consumers’ privacy. Specifically,

we discuss a recently developed FL approach, which uses a parallelized deep learning algo-

rithm to train a model locally on each individual consumer’s device. As an instantiation to

demonstrate the applicability of this approach in a marketing setting, we build a session-

based GRU recurrent neural network that predicts each consumer’s click-stream under the

FL framework. We show the prediction accuracy of the trained neural network via the FL

approach is comparable to that of the benchmark centralized approach. Through this ap-

plication, we demonstrate how firms can continue targeting consumers with a high level of

accuracy without having to store, access, or analyze consumer data in centralized locations,

thereby preserving consumers’ sensitive information.

15As discussed in section 3, increasing local training epochs may not necessarily enhance communication
efficiency. In McMahan et al. (2017), the authors draw the same conclusion.
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