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ABSTRACT

We combine COVID-19 case data with mobility data to estimate a modified susceptible-infected-recovered (SIR)
model in the United States. In contrast to a standard SIR model, we find that the incidence of COVID-19 spread is
concave in the number of infectious individuals, as would be expected if people have inter-related social networks.
This concave shape has a significant impact on forecasted COVID-19 cases. In particular, our model forecasts
that the number of COVID-19 cases would only have an exponential growth for a brief period at the beginning of
the contagion event or right after a reopening, but would quickly settle into a prolonged period of time with stable,
slightly declining levels of disease spread. This pattern is consistent with observed levels of COVID-19 cases in
the US, but inconsistent with standard SIR modeling. We forecast rates of new cases for COVID-19 under different
social distancing norms and find that if social distancing is eliminated there will be a massive increase in the cases
of COVID-19.
Keywords: COVID-19, SIR models, Social distancing, Reopening

Introduction

The COVID-19 pandemic has caused great disruption. Over 43 million people have confirmed diagnoses of the
disease, and over 1 million people have died from it1. It has also had substantial impacts on daily lives and economic
activities2, 3. Many studies have focused on measuring who are affected the most by COVID-194, 5, or which
therapies are appropriate at each stage of the disease6–8. However, it is also crucial to understand how the spread of
COVID-19 depends on preventive measures such as social distancing and how the reopening may affect the spread.

The most common model used to study the spread of COVID-19 is the susceptible-infected-recovered (SIR)
model. In such models, there is a susceptible population, which is assumed to be equal to the population of whichever
region is being examined minus the number of people that have previously had the disease. Some of the susceptible
individuals get infected in each period, where the rate of infection is a function of the number of infectious individuals
as well as other factors that shift the rate of transmission. Finally, infectious individuals move to a state of recovery.
In our analysis, we call anyone who was sick but is no longer infectious to be “recovered,” although some of
these people may still actually be sick, hospitalized, or have died. Thus, the recovered terminology is actually a
shorthand for all post-infectious states. This model, and its variants, have been used extensively to study the growth
of COVID-19. For example, a recent study proposes a Susceptible-Exposed-Infected-Confirmed-Removed (SEIQR)
model, which appends the standard SIR model with a stage modeling susceptible people who become exposed to the
virus and a stage modeling infected people which are confirmed to have the disease9. The paper then applies this
model to estimate COVID-19 transmission in Wuhan, China, showing that an earlier lockdown makes the outbreak
worse in Wuhan but helps the rest of the world. The SEIQR model is also used to show that travel restrictions may
have reduced the spread of COVID-19 from Wuhan, China, to other Chinese cities10, 11. As another variant to the
SIR model, the SEIR model (adding an exposure stage to the SIR model) is also applied to compute the rate of
transmission both from animals to people and from people to people12. While it may seem that having more stages
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in the model would make the SEIR model superior to the SIR model, it has been shown that the standard SIR model
does a better job at predicting the spread of COVID-19, based on data from Wuhan, China13.

In this paper, we use a modified version of the SIR model to measure the extent to which social distancing reduces
the speed at which COVID-19 spreads. We then run simulations to forecast the rates of COVID-19 spread under
different social distancing levels during the reopening. We find that COVID-19 spreads less than proportionately with
the number of infectious individuals, a distinct difference from the assumption of standard models. We demonstrate
that this pattern could be explained by the interconnectedness of people’s social networks. This pattern suggests that
each additional infectious individual has less impact on the disease spread as more people become infected. One key
implication of this finding is that the rate of disease growth can be slow and steady, rather than either exponential or
falling quickly, as would be implied by the most-commonly used models. This leads to more accurate predictions of
the spread of COVID-19. We also observe that social distancing greatly reduces the spread of COVID-19.

Mathematically, we model transmission of COVID-19 as

yi,t = Ri,tSi,t (Yi,t−2−Yi,t−8)
ω (1)

where yi,t is the number of new infections in county i on date t, Ri,t is the rate at which infectious individuals transmit
the disease, Si,t is the percentage of the county population that has not yet had COVID-19, and Yi,t is the cumulative
number of individuals who have been infected by date t. Correspondingly, the Yi,t−2−Yi,t−8 term reflects our
assumption that infected individuals are infectious from the second day after they catch the virus through the seventh
day. This implies that the average serial interval is 4.5 days under the assumption that the level of infectiousness
and the level of contact with susceptible individuals is constant during this time14. This treatment of the infectious
population is an approximation of the standard SIR model, where the infectious population is typically modeled
as a stock that has a constant outflow rate. Discretizing the rate of transmission enables the estimation of a large
number of county and date fixed effects in our model, and as a practical matter this assumption has little impact on
our estimates of the contagion rate. As a robustness check, we obtain extremely similar COVID-19 forecasts if we
take the time of infectiousness to be 14 days, Yi,t−2−Yi,t−16, instead of 6 days, as presented in the appendix. The
main difference between our model and the standard SIR model is the inclusion of the exponent ω on the number of
infectious individuals. This ω allows the rate of growth of COVID-19 to be less than proportionate with the number
of infectious individuals if ω<1. Such a result would be expected if infectious individuals expose many of the same
unexposed individuals, which could occur if people have overlapping social connections. We see this directly when,
for example, cases are clustered within households, nursing homes, or places of work. Thus, we can think of ω as
measuring the extent to which people’s networks are more interconnected to a tight-knit group of individuals relative
to their level of connectedness to the population as a whole.

We also allow the transmission rate Ri,t to vary with a number of factors instead of treating it as a constant
parameter :

Ri,t = exp(αi +βt +λdi,t +µmi,t +θhi,t + εi,t) . (2)

We use di,t , mi,t , and hi,t to represent the level of social distancing, temperature, and humidity in county i on date t,
respectively, and εi,t is the statistical error term. The parameters α and β are vectors of county and date fixed effects,
where the i-th element of α , αi, represents the fixed effect for county i. Similarly, the t-th element of β , βt represents
the fixed effect for date t. These fixed effects measure the baseline transmission rate of each county and each date,
respectively. The parameters λ , µ , and θ measure the impacts of social distancing, temperatures, and humidity
on transmission rates, respectively. In short, this specification allows transmission rates to differ across counties
(through the county fixed effects), dates (through the date fixed effects), levels of social distancing, temperatures,
and humidity. We note that the impacts of the last two factors have been debated in the literature15–17. The county
fixed effects account for differences in demographics across counties, such as the demographics shown in Table 2
below as well as other unobservable county-specific factors. The date fixed effects account for both day-of-the-week
differences in the patterns of travel for people (e.g., the time away from the house to go to work or to go to the park,
which may lead to different exposures to the disease) as well as differences in the rate of testing and reporting that
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Dependent Variable Log(Infected in County i
on Date t)

λ : Impact of Social Dist. Level in -0.824***
County i on Date t (0.245)

ω: Impact of Infectious Individuals in 0.571***
County i on Date t (0.014)

µ: Impact of Avg. Temperature (Celsius) of -0.001
County i on Date t (0.002)

θ : Impact of Avg. Humidity of 0.005**
County i on Date t (0.002)

α: 2923 County Fixed Effects Estimated
(Autauga County, AL is omitted as the baseline)

β : 101 Date Fixed Effects Estimated

Observations 131,272
R_squared 0.63
Counties 2,924
*** p<0.01, ** p<0.05, * p<0.1

Table 1. Estimation of a Modified SIR Model.

occur across time. As a robustness check, we also include the state-level testing numbers directly into Equation
2 during estimation. The results are statistically indistinguishable from the main results, as noted in Results and
Simulation below.

The social distancing measure, di,t , is based on cellphone GPS location data that are provided by SafeGraph for
free to researchers studying COVID-19. We measure social distancing as the first principle component of several
daily measures of each county: the percentage of residents staying home, the percentage of residents working at
workplace full-time, the percentage of residents working at workplace part-time, the median duration of residents
staying home, and the median distance of residents traveled.

As noted earlier, the most crucial difference between our model and a standard SIR model is that a standard
SIR model constrains the exponent ω = 1. We instead find that ω = 0.57. Thus, the marginal impact of one more
infected person diminishes as more people are infected. Such a result would be expected if infectious individuals
expose many of the same unexposed individuals within a clustered network of individuals. In the appendix we
demonstrate that a networking model with contagion can yield ω < 1.

Results and Simulation

The estimated model appears in Table 1, with standard errors (s.e.) reported in the parentheses. The estimated
exponent on the number of infectious people, ω , is 0.57. Thus, the number of new infections is concave with
respect to the number of infectious individuals. This level of concavity also implies that while initial outbreaks of
COVID-19 expand exponentially, the daily number of new cases quickly stabilizes to a long-term plateau. We also
find that social distancing has a large impact on the growth rate of COVID-19, while humidity has a smaller effect
and temperature is insignificant. (When including daily testing numbers of each state in Equation 2, the estimates of
ω and social distancing are 0.568 (s.e. = 0.014) and -0.816 (s.e. = 0.246), respectively.)

All county-level demographic factors remain constant over time in our analysis. While our main regression gives
many insights, impacts of these demographic factors on the spread of the virus are captured by the county fixed
effects. In order to better understand how these factors affect the contagion rate, we next regress the county fixed
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Dependent Variable County Fixed Effect of Each County

Log(Pop. Density of Each County) 0.4410***
(People/Sq. Miles) (0.0096)

Fraction of Black Residents 0.8084***
in Each County (0.0979)

Fraction of Hispanic Residents 1.3438***
in Each County (0.1003)

Percentage of Commuters using Pub. 5.0215***
Transportation in Each County (0.4140)

Log(Median Income of Each County) 1.3387***
(in U.S. dollars) (0.0579)

Percentage of Senior 1.8825***
Residents of Each County (≥70yrs) (0.5255)

Percentage of Children 0.6614
Residents of Each County (<18yrs) (0.4733)

Constant -16.6781***
(0.6462)

R_squared 0.69
Counties 2,923
*** p<0.01, ** p<0.05, * p<0.1

Table 2. Analysis of County Fixed Effects

effects α on several demographic variables of each county. The coefficients from this regression should be thought
of as the impacts of these demographics on the transmission rate. The results from this regression are reported in
Table 2. We observe that the contagion in the disease is increased with greater population density and the percentage
of commuters who use public transportation. We also observe that contagion rates are higher in areas with a higher
fraction of Black and Hispanic residents. Furthermore, the rate of spread is higher for seniors than for younger
people, but children and non-senior adults do not seem to have statistically significantly different rates of contagion.

We next measure the out-of-sample prediction accuracy of our model using a hold-out sample of 75 days
(May 24 - August 6) to see how well our model forecasts new cases. We use the observed county level of
daily social distancing for our out-of-sample predictions. Nationally, this reflects an approximately 50%-60%
return-to-normalcy, but this varies quite a bit across the country. We define the percentage return-to-normalcy as

SocialDistancingPeaki−SocialDistancingi,t
SocialDistancingPeaki−SocialDistancingBe f oreCOV IDi

, where SocialDistancingPeaki is the social distancing level in county i at
its peak (April 5-April 11, 2020), SocialDistancingBe f oreCOV IDi is the observed lowest level of social distancing
in February, and SocialDistancingi,t represents social distancing level on date t. For example, a 25% towards
normalcy represents social distancing at the level of 0.25×(minimum social distancing) + 0.75×(maximum social
distancing).

Figure 1 shows the US actual cumulative cases along with out-of-sample forecasts from a model with ω = 0.57
and a standard model with ω = 1. The black hashed line represents the actual cumulative cases in the US. The green
solid line and the red dashed-line show the out-of-sample forecasts with ω = 0.57 and ω = 1, respectively. We
readily observe that the model with ω = 0.57 fits the data well while the model with ω = 1 does not. Three states
that had their Shelter-in-Place orders expire or stuck down early are Florida, Georgia, and Wisconsin. To further
evaluate our model’s accuracy in prediction, we repeat the same out-of-sample prediction comparisons for these
three states in Figure 2. The figure again shows that the model with ω = 0.57 has a much better fit than the model
with ω = 1.
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Figure 1. Out-of-Sample Fit Comparisons of the US between Our Model and Standard SIR model. The vertical
line on May 23, 2020 indicates the last date used to estimate each model.

We next simulate daily and cumulative cases from August 7 to October 31, 2020 under different levels of social
distancing. When forecasting future cases, we use previous 5-year county temperature data and the May 2020
county average humidity. The top of Figure 3 shows three sets of forecast daily cases after August 6, corresponding
to 75%, current, and 25% levels of return-to-normalcy. We observe that social distancing at the current 60%
return-to-normalcy first leads to a slightly increasing but then slowly decreasing number of cases, going from around
55,000 cases per day in early August to 25,000 cases per day in the end of October. If the US practiced social
distancing at the level reflecting a 25% return-to-normalcy for even a few weeks, new cases would drop to a much
lower level of around 9,000 per day. On the other hand, a return to a 75% level of the normalcy would cause
cases to surge for about two months. The pattern of the surge is consistent with recent studies on the relaxation of
non-pharmaceutical interventions such as shelter-in-place orders18. However, after two months cases would again
reach a long-term plateau, although this would occur at a level that was almost double of what would be experienced
under the early-August level of social distancing. The bottom of Figure 3 depicts the corresponding cumulative
cases for the same time period under 100%, 75%, current, 25%, and 0% levels of return-to-normalcy. The figure
shows a consistent pattern where the cumulative cases look almost linear after the initial take-offs. There would be
substantially more cases if we returned to the pre-COVID level of social distancing.

Methods
In this subsection, we detail the assumptions we make and the estimation procedure. The model is laid out in
equations 1 and 2 above. For simplicity, we rewrite equation 2 as Ri,t = exp

(
X ′i,tΦ+ εi,t

)
, where Xi,t includes county

dummy variables, date dummy variables, the measure of social distancing di,t , and daily average temperature mi,t

and humidity hi,t . Φ is the vector containing the parameters α , β , λ , µ , and θ , which measures the impact of each
element in the vector Xi,t on the transmission rate Ri,t . We assume that the errors εi,t are uncorrelated across counties.
We further assume that εi,t is uncorrelated across time, although we cluster the standard errors by county.

We estimate the model by taking logarithm of both sides. After rearranging we get:

[ln(yi,t)− ln(Si,t)] = X ′i,tΦ+ω ln(Yi,t−2−Yi,t−8)+ εi,t (3)

Note that sometimes yi.t , the diagnosed case number, is 0 for some counties on some dates. Therefore, we adjust
this formula slightly by adding 1 to yi,t so the logarithmic values are always well-defined:

[ln(yi,t +1)− ln(Si,t)] = X ′i,tΦ+ω ln(Yi,t−2−Yi,t−8)+ εi,t (4)
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Figure 2. Out-of-Sample Fit Comparisons of Florida, Georgia, and Wisconsin between Our Model and Standard
SIR model. The vertical line on May 23, 2020 indicates the last date used to estimate each model. The vertical lines
to the left indicate the expiration date of Shelter-in-Place order in each state.
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In some counties, Yi,t−2−Yi,t−8 is 0 for some periods. We do not use those observations for estimation. Note
that because this is a lagged variable, this is a selection based on independent variables and not based on dependent
variables, and hence it does not bias our estimation.

One concern that can arise in estimating this model is that social distancing levels (and regulations) are not
determined in a vacuum: Rather, people social distance more in areas that are hit harder by COVID-19. Thus, εi,t

may be correlated with social distancing, causing a biased measurement of the impact of social distancing on the
rate of contagion. We thus use an instrumental variables (IV) technique to control for this endogeneity bias, where
the amount of rain is our instrument for social distancing. Specifically, we assume that rain directly shifts the level
of social distancing, but is not correlated with εi,t conditional on the temperature and humidity. Several other papers
have used rain as an instrument for social distancing19–22. The first-stage F-statistic for the strength of rain as an
instrument is 214.44, which is highly significant, indicating that rain is a strong instrument.

Data
Our data come from a multitude of sources. We detail the data sources at https://github.com/songyao21
/covid_data_depot. There are a few nonstandard issues to note. Our data on COVID-19 cases consists of
county-level, officially confirmed daily case data of 2,924 US counties from February 1 to August 6 (with the last 75
days used as a hold-out sample). COVID-19 also has an incubation period of approximately 5 days23, 24. Because
of this lag from infection to diagnosis, we assume that cases reported on a particular date actually measure the
COVID-19 infections from 5 days earlier. We also assume that the true number of cases is approximately 10 times
the number of diagnosed cases. We get this number by assuming that the Infection Fatality Rate (IFR) is 0.75%25.
We also assume that any deaths occur 14 days after the confirmed test results. On May 23, 2020, the last day of our
estimation case data, there were 92,622 deaths in the US. On May 9, 2020, there were 1,304,726 officially diagnosed
cases. We hence obtain the factor as (92,622/0.0075)/1,304,726 = 9.5. We round this number up to 10. This is
consistent with Centers for Disease Control and Prevention (CDC) director Robert Redfield’s estimate of the ratio
between actual and confirmed cases26. Our estimates are not sensitive to the specific factor we use. When we run the
simulations, we divide our model’s predicted case numbers by 10, which gives us the prediction of diagnosed cases.

Conclusion
We use a modified SIR model to study the impacts of different factors on the spread of COVID-19. We find that the
impact of each additional infectious individual decreases as more people become infected. A potential mechanism
underpinning this finding is that infections are more likely to occur within interconnected networks. Understanding
the shape of this relationship, and the nonlinear aspects of it, are important for understanding how COVID-19
spreads. Unlike previously-estimated SIR models, our model allows for the possibility that the contagion process
will grow or shrink at relatively steady levels, whereas traditional SIR models have contagion either taking off
exponentially (if R > 1) or falling quickly (if R < 1).

We further find that social distancing helps to curb the speed of the spread. Consequently, we need to be cautious
of breakouts in networks and maintain a reasonably high level of social distancing during the reopening of the
economy. Taking the network effects and social distancing effects together helps give more accurate forecasts about
the timeline of the disease spread, and the ability to analyze and set policies about when to instate shelter-in-place
restrictions or when to allow businesses to be open.
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In this online appendix, we first present our data. We then discuss the sensitivity of our results

to the assumed contagious period. Next, we provide some supplemental details to our simulations.

Finally, we lay out how the concavity we estimate could come from a model of interconnected

networks.

A Data

Our data come from a multitude of sources. We lay out the sources for each of these in turn.

A.1 Positive Cases

Data of positive cases are based on the COVID-19 data published by the New York Times (https:

//github.com/nytimes/covid-19-data, accessed on August 6, 2020). The data contain the daily

confirmed case counts for 2,953 U.S. counties or county-equivalents. The case data for the five

boroughs of New York City, however, are not recorded separately by New York Times. In this case,

we use the data published by the Health Department of New York City in lieu of the five boroughs

(https://github.com/nychealth/coronavirus-data, accessed on August 6, 2020). The case

data of Kansas City, Missouri are also recorded separately because it overlaps with 4 adjacent

counties. We attribute the cases of Kansas City to Jackson County, Missouri because most of the

city lies within Jackson County. We also drop 3 counties because we do not have social distancing

data for 2 of them, and we cannot match the population data for a third (Oglala Lakota County,

SD). Finally, we remove counties that had no confirmed cases during our estimation sample period

of Feb 1, 2020 to May 23, 2020. After all the above-mentioned filters, we have a panel of 2,924

counties. These counties account for 99.76% of the US population and 99.91% of the total U.S.

confirmed COVID-19 cases till August 6, 2020.

There are a few days where there are negative cases that are reported. These are generally

corrections to previous over-reporting. Thus, we clean the negative numbers of cases by subtracting

the absolute value of the negative cases from the proceeding day. In the event that that leads to a

negative number of the proceeding day, we iterate again.

A.2 Social Distancing

We use social distancing data from the company SafeGraph, which collects cellphone GPS data

from U.S. residents, and has made them available for free to academics studying COVID-19. These

data are collected through a series of pings that the company receives for all users who have

installed a number of smartphone apps. The list of apps that collect this information is kept as

a trade secret. We measure social distancing as the first principle component of several measures.

The measures are, on a given day, percentage of residents staying home, percentage of residents

working at workplace full-time, percentage of residents working at workplace part-time, median

duration of residents staying home, and median distance of residents traveled. The SafeGraph data

are published at the Census Block Group level. To accommodate other data sources which are
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available at a less granular level, we aggregate the this variable to the county level by taking the

weighted median, using the number of cellphones in each Census Block Group as the weight.

A.3 Demographic data

We obtain the demographic data from the Census Bureau’s 2014-2018 American Community Sur-

vey (ACS), which contains information of each county’s profile of population, ethnicity, age, median

income, and commuting pattern. The ACS, however, does not report population densities. Safe-

Graph, the company who provides us with the social distancing data, also maintains a dataset of

the land area of each Census Block Group in the US. We aggregate the land areas to the county

level. Together with the county population information from the Census Bureau, we are able to

construct the population density data of each county.

A.4 Weather data

We gathered historical daily rain and temperature data from National Oceanic and Atmospheric

Administration (NOAA) (source: https://www.ncei.noaa.gov/metadata/geoportal/rest/me

tadata/item/gov.noaa.ncdc:C00861/html, accessed on May 21, 2020). The raw weather data is

at the weather station level and we match weather stations to the counties they are in. We use the

average values across weather stations within the same county to construct the weather variables

for that county. For a small number of counties where there are no associated weather stations, we

use the daily state averages as proxies.

A.5 Putting it all together

Our sample is an unbalanced panel because counties start to have positive number of confirmed

cases on di↵erent dates. The earliest date we observe in the sample is Jan 29, 2020, and the last

day is August 6, 2020. Note that we construct actual cases using reported cases 5 days later, and

thus the corresponding sample period based on reported cases is Feb 3, 2020 to August 1, 2020.

Summary statistics of all of the variables we use in the estimation are presented in Table A1.

Note that our humidity data end on May 18, 2020. For estimation we only use case data up to May

18. But our case data proceed past the dates used for estimating the model and we use those data for

validating the model. Those data are publicly available, and we have also posted the compiled case

data and the code for compiling the data at https://github.com/songyao21/covid data depot.

B Sensitivity to Duration of Contagious Period

Research on COVID-19 is nascent, and there are di↵erent views of how long infected individuals

stay contagious. Suppose that such individuals are contagious for 14 days instead of 6 days. Then

the model becomes:

yi,t = Ri,tSi,t (Yi,t�2 � Yi,t�16)
! . (A1)
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(1) (2) (3) (4) (5)
Time-varying Variables N Mean Std Dev. Min Max
Reported cumulative cases 131,272 337.4 2,178 0 63,690
Reported new daily cases 131,272 11.40 64.40 0 2,174
Average temp (in Celsius) 131,272 12.65 6.733 -16.40 32.06
Rain (mm) 131,272 3.469 7.937 0 145.1
Humidity (percentage) 131,272 66.95 15.24 8.745 100
Social distancing 131,272 1.115 1.029 -4.578 4.878
Time-invariant Variables
Median income ($) 2,923 52,580 14,606 19,391 144,821
Population 2,924 111,906 344,510 625 1.004e+07
Population density (people / square miles) 2,924 292.5 1,860 0.0359 71,891
Share of population senior (>=70) 2,924 0.122 0.0327 0.0229 0.384
Share of population youth (<=17) 2,924 0.224 0.0338 0.0732 0.403
Share of population black 2,924 0.096 0.148 0 0.874
Share of population Hispanic 2,924 0.092 0.135 0 0.991
Share of population public transit commuters 2,923 0.010 0.0333 0 0.642

Table A1: Summary Statistics

We present the estimation results of this model in column 2 of Table A2. Note that this regression

has more observations because there are fewer instances where we observe no cases in a county for

a 14-day window than for a 6-day window. The results are largely unchanged. The coe�cient on

social distancing levels are slightly lower, but well within one standard error of the corresponding

coe�cient in column 1. The exponent on the infectious individuals is 0.523. That is somewhat

smaller (but statistically di↵erent) than the 0.571 we observe with the shorter 6-day window, but

overall the curvature shape is similar to what we have observed with the 6-day window. As we will

discussion below in Section C, both specifications give similar long-run forecasting results.

We next regress the county fixed e↵ects on several demographic variables, which are reported

in Table A3. Comparing the results for the 6 day vs. 14 day contagious periods, we see that over

all the results are qualitatively very similar. The main di↵erence is that if the contagious period is

14 days we observe that children are also statistically more contagious than non-senior adults.

C Simulation

We forecast the cumulative and daily cases of COVID-19 through the end of October at di↵erent

levels of social distancing. Those forecasts appear in Figure 2 in the original paper. In Figure A1

below, we replicate the graph with cumulative cases, but further add confidence intervals. To avoid

cluttering, we only depict current and 75% return-to-normalcy levels in A1. We observe that these

forecasts are indeed statistically significantly di↵erent.

As a robustness check regarding the 6-day contagion window specification, we also consider

forecasting US daily cases under the specification where the contagion window is 14 days. Figure

A2 shows the evolution of daily cases till October 31, 2020 under current-level (early August) and
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(1) Contagious for 6 days (2) Contagious for 14 days
Dependent Variable Log(Infected in County i Log(Infected in County i

on Date t) on Date t)
Social Dist. Level in -0.824*** -0.725***

County i on Date t (0.245) (0.215)
Infectious Individuals in 0.571*** 0.523***

County i on Date t (0.014) (0.014)
Avg. Temperature (°C) of -0.001 0.002

County i on Date t (0.002) (0.002)
Avg. Humidity of 0.005** 0.004**

County i on Date t (0.002) (0.002)

County Fixed E↵ects Yes Yes
Date Fixed E↵ects Yes Yes
Observations 131,272 148,946
R squared 0.63 0.64
Counties 2,924 2,924
*** p<0.01, ** p<0.05, * p<0.1

Table A2: Estimation of a Modified SIR Model.

75% return-to-normalcy regimes. We overlay the forecasts of both 14-day and 6-day specifications

for easy comparison. From the figure, we may see the forecasts of 14-day and 6-day contagion

window specifications are fairly close.

D Concavity of SIR model and Network Dynamics

A unique feature of our model is that we estimate an exponent on the number of contagious cases.

We include this flexibility because such a model fits the data much better, and also leads to forecasts

that have more limited growth after an initial take-o↵ of COVID-19 cases, as is commonly observed.

We illustrate that the concave relationship we estimate for the number of contagious individuals on

the number of new cases can come from social networks between people through a very simplified

model of networks and disease process.

To do this, we simulate a network with the following process: We take 10,000 individuals. We

create a network by first randomly assigning that any two individuals will be joined with a common

node with probability 11/20,000. Call these connections “round-1 friends.” We then expand this

network by assigning each node to have an edge with each of the friends of round-1 friends with a

probability of 0.8.

We assume that the disease spreads with the following process. We seed 4 individuals to have

the disease in period 0. Then in each period we assume that any connected individual will get sick

with probability 0.4.

After simulating this process, we then regress (ln (yt)� ln (St)) = c+! ln (yt�1)+"t. The mean

value for !̂ = 0.57. This shows the plausibility of network e↵ects leading to an estimate in the
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(1) Contagious for 6 days (2) Contagious for 14 days
Dependent Variable County Fixed E↵ect County Fixed E↵ect
Log(Pop. Density) 0.4410*** 0.4006***
(People/Sq. Miles) (0.0096) (0.0095)

Fraction Black Residents 0.8084*** 0.7658***
(0.0979) (0.0970)

Percentage Hispanic 1.3438*** 1.3112***
Residents (0.1003) (0.0993)

Percentage of Commuters 5.0215*** 5.5818***
using Pub. Transportation (0.4140) (0.4101)

Log(Median Income) 1.3387*** 1.2564***
(in U.S. dollars) (0.0579) (0.0573)

Percentage of Senior 1.8825*** 2.2584***
Residents (�70yrs) (0.5255) (0.5205)

Percentage of Children 0.6614 1.0609**
Residents (<18yrs) (0.4733) (0.4688)

Constant -16.6781*** -15.7657***
(0.6462) (0.6401)

R squared 0.69 0.66
Counties 2,923 2,923
*** p<0.01, ** p<0.05, * p<0.1

Table A3: Analysis of County Fixed E↵ects
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Figure A1: Cumulative Case Forecasting under Di↵erent Reopening Strategies with
Confidence Intervals. The vertical line indicates the last day of diagnosed case data sample.
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Figure A2: Daily Case Forecasting under Di↵erent Contagion Window Specifications.
The vertical line indicates the last day of diagnosed case data sample.

range that we have estimated in our main model. We have placed the R code for this simulation

at https://github.com/songyao21/covid data depot/network simulation, so that interested

readers can play with the parameters to understand the process more.
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