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Abstract: Online Auction Demand

With $40BB in annual gross merchandise volume, electronic auctions comprise a substantial and
growing sector of the retail economy. Using unique data on Celtic coins, we estimate a structural
model of buyer and seller behavior via MCMC with data augmentation. Results indicate that
buyer valuations are affected by item, seller, and auction characteristics; buyer costs are impacted
by bidding behavior; and seller costs are affected by item characteristics and the number of listings.

The model enables us to compute fee elasticities even though there exists no variation in fees
in our data. We find commission elasticities exceed per-item fee elasticities because they target
high value sellers and enhance their listing likelihood. By targeting commission reductions to high
value sellers auction house revenues can be increased by 3.9%. Computing customer value, we find
attrition of the largest seller would decrease fees paid to the auction house by $97. Given the seller
paid $127 in fees, competitive effects offset only 24% of the fees paid by the seller. In contrast,
competition offsets 81% of the buyer attrition effect. In both events, the auction house would
overvalue its customers by neglecting competitive effects.
Keywords: Auctions, Structural Models, Two Sided Markets, Empirical IO, Bayesian Statistics.



1 Introduction

Commensurate with the ascendancy of the Internet, e-commerce has witnessed explosive growth.

According to a US Census Bureau report in Q1-2006, US e-commerce retail sales increased by

25.4% while retail sales across all channels grew at a more restrained 8.1%.1 Much of this growth

is due to online auctions. For example, eBay alone had 222 million confirmed registered users by

the end of Q4-2006. These users generated a gross merchandise volume of $14.4 billion across 610

million auctions, a growth rate of 23%.2 This compares to quarterly sales of roughly $100 billion

in the US Grocery industry.3

Concurrent with this growth, empirical/econometric research pertaining to the design and con-

duct of auctions has seen increased attention in marketing of late (Chakravarti et al. (2002)). For

example, Park and Bradlow (2005) analyze “whether, who, when and how much” to bid under

an online auction context; Chan et al. (2007) consider bidders’ willingness to pay for an auction;

and Bradlow and Park (2007) investigate how bidders’ behaviors evolve over the course of an auc-

tion. This research has led to some important insights regarding the nature of bidder behavior in

auctions. We extend this empirical literature by considering the behavior of sellers at the auction

site. An integrated analysis of bidder and seller behavior has pivotal implications for the marketing

policies of the auction house, such as the fees the auction house sets, the rules used to conduct the

auction, or an assessment of the value of its customers (Greenleaf and Sinha (1996)).

Given our interest in seller behavior and its attendant policy implications, we focus on structural

models of auction behavior. Such models enable one to ascertain unobserved characteristics of

bidders and sellers, such as their latent costs of bidding and listing and their ramifications for

auction fees, mechanism design and/or customer value.4 Like the marketing literature to which we

alluded above, structural model research in the context of auctions has largely focused on bidder

behavior (Reiss and Wolak (2005)). For example, Bajari and Hortacsu (2003) propose a structural

model to explore the determinants of bidders bidding behaviors. The paper assesses the effects

1Resource: US Census Bureau(2006, Q1), Quarterly Retail E-Commerce Sales. (http://www.census.gov/mrts/
www/ecomm.html)

2Resource: eBay Inc. 4qtr-2006 Financial Releases.
3Resource: “Grocery Stores and Supermarkets Industry Profile Excerpt”, First Research, 2005. (http://www.

firstresearch.com/Industry-Research/Grocery-Stores-and-Supermarkets.html)
4As discussed in Laffont and Vuong (1996), auction data are well-suited for structural models as auctions are

asymmetric information games and the data generating process is strategy-driven. For a more complete summary of
structural models of auctions, see Reiss and Wolak (2005).
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of endogenous bidder entry into an auction and is among the first to model structural bidding

behavior in the context of electronic auctions. As such, it forms a cornerstone of the bidder model

in our research. Jofre-Bonet and Pesendorfer (2003) consider dynamic bidding behavior arising

from capacity constraints in a repeated procurement auction game. They find these constraints

lead to higher bids because a winning bid increases capacity constraints in the subsequent period;

this reduced incentive to win is commensurate with higher bids. Campo et al. (2002) investigate an

auction model with possible risk averse bidders and propose a semiparametric estimation procedure

to test the risk neutrality of bidders. There is also a rich literature focusing on the question of

identification of empirical auction models, e.g., Paarsch (1992), Guerre et al. (2000), Athey and

Haile (2002), Hong and Shum (2002) and Haile et al. (2003). In sum, this literature has further

enriched our insights regarding strategic buying behavior in the context of auctions.

Our model supplements the structural auctions literature in a number of regards: First, we

integrate both bidder and seller behavior; that is, we do not presume seller behavior regarding the

number of items to list to be exogenous. In practice, both bidders and sellers are strategically

interactive, and it is reasonable to suspect that the market equilibrium is determined by their

interactions. The integration of bidder and seller behavior in auctions is an example of a two-sided

market, wherein multiple parties interact on a platform (Rochet and Tirole (2006); Tucker (2005)).

Following Rochet and Tirole (2006), the two-sided network as well as the period payment flows

between the various agents can be depicted graphically as indicated in Figure 1a. Though there

is a rich theoretical literature pertaining to these two-sided markets, empirical research remains

nascent (Roson (2005)). We contribute to this empirical literature by a) assessing how these

markets should be priced, b) the value of agents in these markets, and c) an empirical analysis

of two-sided markets in the context of auctions. Second, we accommodate heterogenous bidding

disutilities/costs across bidders.5 As a result, we can infer how changes in the listing behavior of

the seller affect each bidder’s likelihood of bidding in any given auction. Summing these behaviors

across bidders and auctions yields the total auction revenue conditioned on seller listings. Third,

we incorporate heterogeneity in seller costs. Heterogeneity in costs implies that the number of

5Bajari and Hortacsu (2003) assume an opportunity cost for bidders such that all bidders’ entry decisions satisfy
a “zero profit condition”. That is, no bidder obtains positive expected utility for attending auctions. Given the
estimates of their model, the distribution of the cost is simulated based on the “zero profit condition” and the model
estimates. In our context we observe bidders’ bidding histories across multiple auctions which enables us to explicitly
estimate heterogenous bidding disutilities across bidders.
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auctions listed can change in response to bidders’ valuations or auction house fees. Fourth, we

integrate Bayesian statistics and structural models in the context of auctions, which is relatively

novel in marketing and economics.6 The Bayesian approach enables considerable flexibility in model

specification (Rossi et al. (1996)).

Together, these innovations enable us to assess how changes in auction house strategies (such

as fee schedules or auction design) affect the number of auctions and the corresponding bidding

behaviors even in the absence of any observed variation in these strategies. This in turn affects the

number of items upon which bidders bid. As a result, the auction house can forecast the effect of

fee changes on the equilibrium number of items listed by sellers and the prices that buyers pay for

these items. Closing prices and the number of items listed factor into the auction house revenue. In

this manner it is possible to compute price elasticities for the auction house fees in order to evaluate

its pricing strategy. In contrast, it is difficult to assess these elasticities by regressing seller listings

and closing prices on fees, because there is often little variation in fees from which to infer changes

in auction demand and prices. eBay, for example, changes its fees about once per year, leaving few

observations from which to infer price response. Moreover, to infer price response, one would need

to use observations regarding fee changes that are many years old and it is unclear whether data

from the distant past remain valid given the changing sample composition of customers over time.

Using the imputed price-demand system, we conclude (via a pricing policy experiment wherein

we manipulate auction house prices) that changing fees can increase auction house revenue by 3.9%

with a targeted pricing strategy and 2.9% with a uniform pricing strategy. Much of this gain arises

from emphasizing per item fees over commissions. Lower commissions disproportionately attract

higher valuation items by increasing per item profits. This further suggests that categories with a

greater prevalence of high value items such as art should emphasize per item fees over commissions.

Figure 1b depicts the pricing policy experiment graphically in the context of the two-sided market.

A corollary benefit of the foregoing innovations is that they enable one to assess the short-term

value of a customer in a two-sided market.7 Information regarding customer value is useful for

assessing how much to invest in retaining a customer (exemplified via a targeted coupon or rebate

from the auction house). A common approach toward assessing customer value is to simply tally

6Bajari and Hortacsu (2003) is a notable exception.
7By short-term, we refer to the value of the customer over the duration of our data. Long-term, or life-time value

would consider the infinite horizon value of a customer.
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Figure 1a: Payment Flows in a Two-sided Market

Figure 1b: Pricing Decision of the Auction House in a Two-sided Market

Figure 1c: The Value of a Customer in a Two-Sided Market
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the total commissions and fees the seller pays to the auction house. However, were that seller to

depart the system, some bidders would switch to other sellers. Moreover, with less competition, the

remaining sellers are inclined to list more items. Both behaviors affect equilibrium prices. A proper

accounting of these competitive effects offsets about 24% of the fees paid by a departing seller. An

analogous argument can be constructed for valuing buyers. The lost revenue resulting from the

attrition of a buyer is offset by the remaining bidders who bid on the items that the attriting buyer

would have purchased. In addition, the departure of a buyer can incent a seller to reduce listings

in response to a decrease in the expected price they will receive. We find other bidders bidding

on the items of the attrited buyer offset about 81% of the lost revenue from the attrited buyer.

Stated differently, valuing agents without regard to competitive interactions overstates the value

of the seller by 1/3 and the value of a buyer in excess of 400%. These conclusions arise from a

policy experiment wherein we assess the impact of an attrited customer on equilibrium revenue.

This policy experiment is reflected graphically in Figure 1c. It is worth noting that Figures 1a—

1c suggest that our model could also be useful in addressing further policy experiments such as

assessing the profitability of auction fees to the buyer.

In sum, explicitly considering seller and bidder behavior in a joint system or two-sided market

enables one to a) attain a better understanding of how sellers make listing decisions and b) engage

policy simulations to help the auction house implement its marketing strategies. With these goals

in mind, the paper is organized as follows. Section 2 describes the bidding mechanism used by

many online auction houses. This characterization motivates the structure of the game. Next,

we present our data and some exploratory analyses to develop insights regarding auction behavior,

especially with respect to the interaction between bidders and sellers. We then detail the model and

corresponding estimation approach in Section 3 and 4. Results of this model are detailed in Section

5. Using the results, Section 6 overviews the managerial implications, including the impact of fee

changes, valuing customers and gauging the effect of seller’s reputation in auctions. This discussion

is followed by Section 7, which concludes the paper with a summary of findings, limitations and

future research directions.

5



2 The E-auction Context and Data

A necessary precursor to modeling auction behavior is a complete characterization of the process

of listing and bidding an item. Hence, in this section, we preface our model discussion with

a characterization of the data and auction mechanism. As the firm supplying the data wishes

to remain anonymous, we describe the process in somewhat general terms, beginning with the

decisions of the seller.

2.1 Rules of the Auction House and Participants’ Decision Processes

2.1.1 Listing

A seller commences an auction by listing an item online. To list an item, the seller must be

registered with the auction firm and pay a small listing fee. For an additional fee, sellers can also

opt for listing features such as product pictures, the duration of the auction, a secret reserve price,

etc.. Secret reserves enable a seller to retain the listed item should the highest bid fail to exceed

the reserve, which is not revealed to bidders. In addition to these listing features, experienced

sellers (by virtue of interactions with past buyers) can also garner reputation ratings. Previously

successful buyers can provide positive, negative or neutral ratings for the seller based on the buyer’s

experience with the transaction.

If the auction successfully concludes, the seller pays a commission and listing fee to the firm. If

not, the seller is responsible only for a listing fee. Other seller costs include acquisition costs and

shipping. We presume sellers’ listing strategies (whether and how many items to list) are selected

to maximize the seller’s profit. Figure 2 overviews the decision of sellers. The links in the Figure,

denoted S1-S8 reflect the processes modeled in this paper.

2.1.2 Bidding

Bidders typically initiate the bidding process via a key-word search to locate relevant sellers, cate-

gories and items of interest. The results of this search list pertinent items open to bidding, sorted

by price and time left until the auction concludes. Upon finding an item of interest, a bidder can

bid immediately (if registered) or place the item onto a “watch list” for subsequent monitoring and

potential bidding.

The bidding mechanism used by the auction house is called “proxy bidding”. With proxy
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Figure 2: The Seller Decision

bidding, a bidder enters an auction prior to its conclusion and submits their bid. The website will

then act as a “proxy” to bid for the bidder by entering a bid on behalf of the user whenever the

user is outbid (to some pre-determined maximum level). For example, assume a bidder intends to

bid no more than $10.00 for a given item. Suppose further that the item’s current price is $1.00

with a bid increment of $0.50. By submitting a $10.00 proxy bid to the website, the auction site

enters a bid of $1.50 on behalf of the bidder. If another bidder enters and bids $5.00, the proxy bid

automatically becomes $5.50. If a subsequent bid of $15.00 materializes, the high bid changes to

$10.50 and the first bidder receives an E-mail notification that they were outbid. The bidder can

then choose whether to increase their bid or quit the auction altogether.

Upon placing the highest bid, the bidder wins the auction and makes a payment to the seller

that equals to the second highest bid. It is the responsibility of the seller and the winning bidder

to settle payment and delivery issues. We presume that a bidder’s bidding strategy (whether and

how much to bid) is selected to maximize their expected profits. More specifically, we assume the

bidder will bid if the expected return from doing so exceeds the cost. Figure 3 overviews bidding

decision process. The links in the Figure, denoted B1-B10 reflect the bidder behaviors we model.
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Figure 3: The Bidder Decision

2.1.3 Seller-Bidder Interactions

The foregoing discussion suggests why it is desirable to model bidder and seller behaviors jointly.

First, the bidder’s costs and returns affect the optimal bidding levels and decisions to bid. Strategic

sellers form expectations regarding bidding levels and bidder costs. Predicated upon these expecta-

tions, sellers make listing decisions. Bidders, who are also strategic, in turn make bidding decisions

conditional on the seller’s listing behavior. Hence, seller and bidder decisions are interdependent.

Accordingly, the auction house directly affects the seller’s profits and the number of items sellers list

by varying auction fees. The effects of a fee change propagate to bidders by altering the decisions of

sellers. To exemplify this point, we next describe our data and present some descriptive statistics

regarding bidder-seller interactions.

2.2 Data

We use a unique data set generously presented by an international auction house that prefers to

remain anonymous. The focal category is collectible Celtic coins. We selected this category because

it is fairly isolated, inasmuch as bidders in this category tend not to buy other types of coins. This

mitigates considerations regarding seller and bidder behavior in other categories. The data were
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collected from November, 2004 to April, 2005 and encompass 816 auctions8 listed by 57 sellers over

189 days. Of these listings, 72.2% were finally sold. The number of bidders is 925. The auctions

data comprise several files, including a listing file, a bidding file, and a demographics file for the

bidders and sellers. We describe each in turn.

2.2.1 Listing File

The listing data include, for each item listed, the unique seller ID, a text description of the item,

and the item’s listing characteristics. These characteristics include “picture”, whether the seller

includes at least one picture of the item in their listing; “subtitle”, a paid feature which present

detailed descriptions under the listing title; “gallery picture”, an icon-size picture of the item beside

the title when the auction is presented by the search engine; “store”, which enables a seller to group

items on a single web page; “bold”, in which the auction title is shown as bold characters; and

“featured listing”, wherein the item listing is displayed near the top of the searching results. For

each listing, we also observe the exact value of the secret reserve price, if chosen by the seller.

We include the percentage statistics of the listing features in Table 1. This Table shows “Bold”,

“Featured Listing” and “Secret Reserve” are seldom used by sellers.

Table 1: Listing Features Summary Statistics

Listing Features Percentage
Picture 90.21
Subtitle 4.57
Gallery Picture 30.90
Bold 1.85
Featured Listing 0.54
Online Store 28.00
Secrete Reserve 2.33
Number of Auctions 816

To obtain the prevailing market prices of listed items, we collect the data from two sources. The

first one is an online coins catalog (www.vcoins.com), which is widely recognized among the coin

collectors community. A second source is from the book Coins of England and the United Kingdom,
8This number reflects the exclusion of 36 largely inactive sellers who only listed one auction in the 6-month period.

The sparse observation per seller make it difficult to make inferences regarding their behavior and identify seller-
specific effects (that said, our key results are robust to their inclusion). By omitting these 36 sellers/auctions, we also
lose 10 bidders (out of a pool of 935 bidders) who bid only in those auctions.
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Standard Catalogue of British Coins, 41st Edition. We report the price information together with

some other listing information in Table 2.

Table 2: Auctions Summary Statistics

Mean Std. Dev. Median Min. Max.
Book Value $ 93.39 96.87 55 3 675
Final Price/Book Value 0.86 1.31 0.48 0 4.25
Secret Reserve Price/Book Value (Obs.=19) 1.33 2.23 0.54 0.13 9.06
Minimum Bid/Book Value 0.15 0.46 0.1 4.00E-05 11.65
Average Listing Fees per Auction $ 0.74 1.59 0.35 0.25 21.40
Average Commissions per Auctions $ 1.00 1.99 0.39 0 22.62
Duration (Days) 7.01 1.14 7 1 10
Lapse Since Last Listing (Days) 53.23 42.22 42 1 180
Number of Concurrent Listings By the Same Seller 1.65 1.3 1 1 12
Number of Sellers per Week 14.96 3.84 15 9 23

The final price is close to book value. While auction durations vary from 1 day to 10 days, most

auctions last 7 days. Hence, we define the interval of analysis (e.g., whether to list) to be weekly.

All auctions employ an open reserve price, denoted minimum bid, that is observed by all buyers. A

handful of sellers (2.3%) also employ a secret reserve. Though its level is not known to the bidders,

the presence of a secret reserve is common knowledge and can therefore enter the bidder utility

function.

2.2.2 Bidding File

The bidding data include a detailed bidding history of each unique bidder ID through the 6 months.

Thus we observe every bid a bidder submits and the time the bid was made. This includes the

highest bid that occurred in each auction, which is not normally observed for most sealed second-

price online auction data. Table 3 presents some summary statistics of the data.

Table 3: Bidders Summary Statistics

Mean Std. Dev. Median Min. Max.
Number of Bidders per Auction 2.58 2.94 1.50 0 18
Number of Bids per Auction 4.17 5.44 2 0 31
Lapse Since Last Winning (Days) 61.37 41.73 56 7 189
Number of Concurrent Auctions Attended per Week 1.02 0.24 1 1 15
Number of Bidders per Week 64.46 29.82 58.50 18 160
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The majority of bidders only attend one auction per week, suggesting that purchases are not

concentrated in the hands of a few buyers. We also observe little evidence of buyer reselling as

none are cross listed as sellers and they tend to purchase only one coin at a time. In addition,

the total number of items listed is dominated by a few large sellers.9 Together, these observations

reflect a market comprised of many collectors buying from a set of dealers and that it is therefore

appropriate to model the bidders and sellers as different agents. The lapse since last winning varies

dramatically across bidders and suggests the importance of capturing heterogeneity across bidders.

2.2.3 Demographic File: Seller and Buyer Feedback

The demographic file includes demographic information for sellers and bidders. With the exception

of participants’ feedback scores, these demographics are incomplete, so we focus only on feedback

scores. We report the feedback scores in Table 4. Among the participants population, 5.5% are

females, 53.6% are males, and the balance did not report their gender.

Table 4: Feedback Summary Statistics

Mean Std. Dev. Median Min. Max.
Seller Feedback Rating 1886.25 2554.18 821.5 1 13600
Bidder Feedback Rating 186.55 273.55 89 -1 2167

While feedback scores for both sellers and bidders evidence considerable variation, the scores

for sellers are more diverse. Also, as a group, sellers have a higher mean and median feedback score

than bidders, which suggests that sellers are more active and experienced than bidders.

3 An Integrated Model of Bidders and Sellers

3.1 Key Assumptions and Nomenclature

We detail a number of assumptions used to make our modeling approach more efficient. Most are

standard assumptions in the literature. These are as follows:

• First, we assume a private value (PV) auction. The assumptions of a private value (PV)

auction and a common value (CV) auction lead to different interpretations of the data and

9The seller market is moderately concentrated with a Herfindahl Index of 0.12. The top 15 sellers account for 80%
of all listings.
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methods of inference (Milgrom and Weber (1982)).10

Table 5: Private Value vs. Common Value –Regression of Bids on the Number of Bidders

All Bids Last Bids
Intercept -0.05 (0.16) 0.34 (0.21)
Log(Number of Bidders) 0.48* (0.03) 0.41* (0.04)
Log(Book Value) 0.65* (0.03) 0.57* (0.04)
Log(Seller Feedback) -0.06* (0.01) -0.05* (0.02)
Secret Reserve Price 0.49* (0.10) 0.56* (0.15)
Gallery Picture 0.03 (0.04) 0.10* (0.05)
Log(Bidder Feedback) 0.01 (0.01) 0.01 (0.02)
Number of Obs. Used 3344 2117
Adjusted R2 0.29 0.25

To justify the PV assumption, we use the empirical test first proposed by Milgrom and Weber

(1982). The method is also discussed and implemented in other literature (Athey and Haile

(2002); Bajari and Hortacsu (2003); Haile et al. (2003); Paarsch (1992)). The idea of the test

is to exploit the relationship between the number of bidders and bids. With the existence

of the “winner’s curse” in common value auctions, the average bids in an N—bidder auction

should be lower than a (N − 1)—bidder auction.11 In comparison, such a relationship does

not hold under a private value assumption. In Table 5, we present the results from two IV

regressions of (log) bids on (log) number of bidders. The first regression uses all bids while the

second only uses the last bids of each bidder. Using (log) minimum bid, “Bold” and “Featured

Listing” as instruments for the number of bidders, the regression coefficients for the number

of bidders on prices are positive and significant. Thus we proceed with the Private Value

assumption in our structural empirical model. Under the PV assumption auctions reduce to

a second price, sealed bid auction (Vickrey (1961); Milgrom and Weber (1982)).

10There are two types auctions based on the degree of independence across bidders’ valuation for an auctioned item:
private value and common value. In a private value model, bidders evaluate the item independently from others and
such valuations are private information. Knowledge of others’ valuations does not affect one’s own valuation. In
contrast, the common value model assumes all bidders’ valuations are identical ex post (even though each bidder may
have an idiosyncratic ex ante valuation).
11 In common value settings, winning bidders are those most likely to have over-estimated an item’s value (which

is the reason for their highest bids). Note that all bidders have the same ex post valuation. Thus, winning bidders
typically over-pay, hence the “winner’s curse”. The bidder will lower their bid to offset this potential over-estimation.
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• Second, we assume bidders’ private valuation signals for a given item are drawn indepen-

dently from the value distribution, another common assumption in the literature, denoted

independent value (IV). Given the context of bidders bidding modestly priced items over the

Internet (with dispersed bidders and limited interpersonal contact), we also believe this to be

a reasonable assumption. Note that this assumption does not imply valuations are indepen-

dent as changes in the mean of the distribution affect all bidders. For example, the seller use

of a gallery can affect all buyers’ valuations. As noted by Reiss and Wolak (2005), the alter-

native assumption of Affiliated Values (AV) has seen scant attention because it is difficult to

characterize the equilibria of these auctions (requiring additional strict assumptions). Thus,

like most research that precedes ours, we model an Independent Private Value (IPV) auction

on the bidder side.

• Third, we consider a static game with bidders and sellers. This assumption is not as re-

strictive as it initially appears, as we can control for dynamics such as an inter-temporal

budget constraint via a reduced-form approximation. We leave more formal resolution of the

dynamic problem for future research; this would entail solving a dynamic program, ensuring

the equilibrium is unique, and identifying this solution from the data, all of which may be a

contribution in its own right, if feasible. As noted in our literature review, this is a prevalent

assumption.

• Fourth, we model cross-auction interdependence by specifying a diminishing marginal value

for each additional auction attended. In contexts wherein bidders routinely bid on multiple

concurrent auctions, there exist the potential for other interdependencies in strategic bidding

behavior (Brusco and Lopomo (2006)). However, Table 3 indicates there exists little multi-

ple auction bidding suggesting that this is an appropriate approximation. Accommodating

strategic cross-item bidding adds considerable complexity to the model with little attendant

benefit given the limited occurrence of these events in our data.

• Fifth, we assume the sellers’ choices of listing features (e.g., reservation prices, gallery, etc.)

are exogenously given. Endogenizing this decision admits a multiplicity of listing feature

equilibria, rendering such a specification of little value for assessing how the pricing of features

affects demand for these features. Moreover, endogenizing feature choices implies the need to
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compute an equilibrium for every set of features, which leads to the curse of dimensionality

and quickly becomes infeasible (or requiring an approximate as opposed to an exact solution).

Thus, we leave it to future research in combinatorial optimization to assess whether this

problem is resolvable and restrict our analysis to the effect of listing fees and commissions.12

We note prior research considers seller behavior to be altogether exogenous.

• Sixth, our model estimation assumes bidders and sellers are fully informed about the num-

ber of bidders in the market and the bidder valuation and bidder cost distributions. The

assumption that bidders and sellers are aware of the value distribution may be a reasonable

approximation in light of the ability of bidders and sellers to monitor auction outcomes over

time by observing historical bids on the web site. Most preceding research makes this as-

sumption on the bidder side and we extend this precedent to the seller side. The number

of sellers and bidders can also be observed from the web site. We explore the assumption

that sellers and bidders are fully informed about the buyer cost distribution by estimating a

model wherein we assume their knowledge is limited only to the mean of this distribution.

We find this model leads to a 0.9% decrease in the log marginal likelihood.13 For our policy

simulations we invoke the additional assumption sellers form expectations about the number

of sellers in the market and the distribution of seller costs.

• Seventh, we assume risk neutral and symmetric bidders, consistent with previous literature

(e.g., Bajari and Hortacsu (2003)). Symmetry implies that bidders draw private valuations

from the same distribution, ex ante. However, upon receiving their signals, they differ in their

individual valuations. Moreover, heterogeneity in bidder costs implies bidders are asymmetric

in their bidding utilities even when they ex ante have the same expected valuation for an item

(as utility is value less costs). Accordingly, the symmetry assumption is not as restrictive as
12 It is possible to endogenize the reservation price decision. A benefit of this approach is that such a model

formalizes the decision making process on the part of the seller. The cost is that endogenous reservation prices
make the model more complex (i.e., introduces additional noise along with explanation). Given the trade-off, we
test such a model and find that endogenizing reservation price has only a negligible effect on parameter estimates
(the correlation between the median parameter estimates in this model and our base formulation is 0.985). Further,
the endogenous reservation price model evidences lower fit (by decreasing the log marginal likelihood for listings and
bids from -21278.41 to -22150.82). Therefore we do not pursue this development further in this paper. As an aside,
endogenizing reservation prices leads to reservation pricing equilibria that may not be unique; as such the model has
more limited applicability in the context of policy simulations.
13The assumption that bidders and sellers know the full bidder cost distribution results in a log marginal likelihood

of -21278.4. Restricting this knowledge to only the the mean of this distribution yields a log marginal likelihood of
-21469.9. Hence the data support the assumption that bidders and sellers are aware of the bidder cost distribution.
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it may appear. Nonetheless, we explore this assumption following the approach of Athey

et al. (2004) and Flambard and Perrigne (2004), who posit asymmetry in valuations arises

from bidders’ idiosyncratic characteristics. Following this approach, we regress final bids on

observed bidder characteristics including bidder feedback, time lapse since last bid, and time

lapse since last win. We find none of these effects to be statistically significant, consistent

with the assumption of symmetric bidders.

• Eighth, we assume that the focal auction house is operating as a monopoly. We believe it

is a reasonable approximation due to the dominant market share of the auction house in

the category and market we consider. Its scale leads to strong network effects (for example,

a seller can reach a large number of bidders) making it difficult for bidders and sellers to

successfully buy and list items with competing houses and reducing the likelihood they will

defect over a small change in fees. Evidence for this assumption is afforded by a small share

competitor who lowered their fees with no effect on the share of the considered firm.

• Ninth, we focus on behaviors within one category and abstract any cross category bidding,

listing implications (e.g., Haile et al. (2003) and others). We select our category of analysis

to comport with this assumption.

3.2 Model Overview

We assume the bidder-seller game in any given period (e.g. weekly in our data) as follows:

• In Stage 0, each seller is endowed with some types of coins associated with a seller-item specific

opportunity cost for acquiring the coin(s). For each type of these coins, an optimal listing

feature combination is exogenously determined by the item’s and seller’s characteristics. This

combination of listing features, in conjunction with seller and item characteristics, determines

the distribution of valuations of bidders regarding the item. Each bidder will then draw a

valuation for the item from this distribution.

• In Stage 1, conditioned upon house fees, the acquisition costs and the expected revenue, the

seller assesses the expected return. The seller then decides whether to list and, if so, how

many items to list for each type conditional on the expected returns. More specifically, we
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presume the seller lists the precise number of items that leads to the highest profit over all

alternative numbers of items listed.

• In Stage 2, for each auction, each bidder decides whether to participate in the auction and,

if so, submits the optimal bid. As noted by Bajari and Hortacsu (2003), sniping (last-minute

bidding) is the unique Bayesian Nash equilibrium for on-line auctions and, as a result, these

auctions are equivalent to sealed-bid second price auctions. Even in the absence of sniping,

when the IPV assumption sustains, auctions are equivalent to sealed-bid second price auctions

(Vickrey (1961); Milgrom and Weber (1982)), i.e., the timing of bid submission does not

affect the optimal bidding strategy. As such, we abstract away from within-auction bidding

dynamics.

Given we assume that the listing feature choice and cost function are exogenously determined

in Stage 0, we only detail the game for Stage 1 (how many items to list) and Stage 2 (conditioned

on listings, how much to bid). We solve this problem using backward induction, beginning with the

bidder model first. As a further prelude to our model, some clarifications of the indices we use are

necessary. We define i = 1, 2, ..., I to indicate sellers and j = 1, 2, ..., J to denote the bidders in the

market. Different types t = 1, 2, ..., T of items are available for auction (e.g., Celtic silver drachm

of Alexander III vs. Celtic silver tetradrachm of Philip II). The same seller can initiate multiple

auctions for the same type of coin. We use n = 1, 2, ..., N to index auctions.

3.3 The Second Stage — Bidder’s Model

3.3.1 The Valuation of A Bidder

For the n-th auction with item t listed by seller i, each potential bidder draws a valuation from the

distribution with p.d.f. g(vijtn|μit, σ), where vijtn stands for bidder j’s valuation for the item (for

example, a specific coin). We presume the bidder’s valuation for a given type of item auctioned by

a given seller remains the same across auctions, i.e., vijtn = vijtn0 . This ensures that the primary

source of variation in unobserved valuations occurs across bidders as opposed to within bidder

volatility in valuations, as the within person variation is likely to be relatively constant over a

short span of time (recall, we can allow longitudinal variation in bidder valuations via observed

changes in item and seller characteristics in conjunction with listing features). We define μit and

σ to be the value distribution mean and standard deviation respectively. A natural candidate for
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the distribution g(vijtn|μit, σ) is a normal distribution. We assume that14

(vijtn|μit, σ) ∼ N(μit, σ) (1)

For second price sealed auctions under an independent private value setting, one bidder’s val-

uation of the item is independent from others’ valuations and the number of competitors. Upon

winning the auction, the realized gross return is exactly the bidder’s valuation, vijtn.

We posit the valuation distribution of an auction is incumbent upon item and seller character-

istics as well as listing features (links B1-B3, Figure 3). We therefore set

μit = Zμ
itβ

μ (2)

Zμ
it = [1, BOOKV ALit, FeedbackSelleri,MinBidit,

ReserveDummyit, StoreDummyi, SubtitleDummyit, GalleryDummyit] (3)

and ensure σ to be positive by using a truncated normal as its proposal density function in the

sampling chain (see the Appendix A3.3).15 The choice of variables to use is motivated by the

variables available in the data. However, there is little variation in “Bold” and “Featured Listing”

so it is not possible to reliably estimate these effects.

We place normal distributions on the priors of βμ. We try to minimize the effect of the choice

of priors on the shape of posterior distributions by choosing a diffuse prior. Details of the choice

of priors and sampling chain are presented in the Appendix A3.

3.3.2 Minimum Bid, Disutility of Bidding and The Optimal Bidding Strategy

Optimal Bidding Strategy In addition to bidder valuations (link B5), two other factors affect

bidder strategy. First, each auction has a minimum bid, MinBidit, which is common across the

same items listed by a seller. MinBidit functions as a “reserve price” as discussed in Milgrom

and Weber (1982). All submitted bids must be greater than the minimum bid (link B6). Second,

each customer has a disutility of bidding, Cb
ijtn, which we express as a dollar metric and can be

14We also considered a lognormal distribution for v to ensure all valuations are positive, however this led to a
considerable decrease in model fit (-21278.4 vs. -23305.8). The negative values implied by the normal distribution
may be justfied by the explanation that some bidders do value the item negatively. A similar specification is used in
Bajari and Hortacsu (2003).
15We also considered a specification wherein the variance of the bidder valuation distribution was a function of

item, seller and marketing characterstics, that is σit = σ(Zit). However, this model did not improve fit nor were any
of the variables significant (the log marginal likelihood of the alternative specification is -21355.7).
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interpreted as the bidder’s “marginal cost” for bidding on one more item (we parameterize these

costs in the next section). Higher costs reduce the likelihood of a bid on a given auction (link

B7). This disutility can involve opportunity costs on time such as the efforts for researching and

monitoring of the auction as well as reflecting the opportunity cost of capital. Following an approach

similar to Milgrom and Weber (1982), we obtain the following result.

Theorem 1 For a given auction itn having a minimum bid MinBidit, bidder j has bidding disu-

tility Cb
ijtn. The optimal bidding strategy is

b∗(vijtn) =

½
vijtn if vijtn ≥ x∗ijtn
0 otherwise

(4)

where x∗ijtn is defined by the implicit function

Cb
ijtn =

Z x∗ijtn

−∞
(x∗ijtn −max(αj ,MinBidit))f(αj)dαj (5)

where f
³
αj

´
is the density function of αj, the highest competing bid.

Proof: See Appendix A1.

Theorem 1 suggests that in equilibrium a bidder will only bid if their valuation for an item

exceeds a certain threshold, x∗ijtn, and, if so, they will bid the valuation, i.e., “truth-telling” (links

B8-B10). The bidding threshold, x∗ijtn, is an increasing function of three factors: i) theMinBidit, ii)

the bidder cost, Cb
ijtn and, iii) the expected highest competing bid, αj . As the MinBidit increases,

only higher value bidders will participate, increasing the expected closing price. Hence only higher

valuation bidders are likely to participate thereby elevating the participation threshold. Second,

higher bidder costs imply higher valuations are necessary to make a bid profitable. Thus, the

bidding threshold increases with bidder costs. Third, x∗ijtn is increasing in αj . As an order statistic,

αj increases with the number of bidders; hence the bidding threshold rises with the number of

bidders. As such, the intensity of competition affects the likelihood of an individual’s entry into an

auction.

Bidder Costs, Cb
ijtn The marginal disutility of bidding in a focal auction (link B4) is assumed

to be bidder-auction specific and is specified as follows:

log(Cb
ijtn) = βCb0j + ZCb

ijtnβ
Cb
+ eCbijtn; eCbijtn ∼ N(0, 1) (6)

ZCb

ijtn = [log(AttendedAuctionijtn + 1), log(Lapseijtn)]
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where AttendedAuction is the total number of alternative auctions the bidder is attending during

the duration of the focal auction; the “+1” ensures the log function is defined; Lapse is the lapse

of time since the last win; and var(eCbijtn) = 1 to ensure identification of costs.
16

The Lapse variable reflects potential inter-temporal dynamics in bidding behavior. Inter-

temporal dependence can also be induced by price or listing expectations. For example, rising

expectations regarding the number of potential future listings might induce customers to delay

purchases. In addition, the presence of an inter-temporal budget constraint or an inventory con-

straint implies bidders who recently win auctions may have less space or cash available to purchase

on subsequent bidding occasions, thereby lowering their bidding likelihood (i.e., the marginal utility

of bidding decreases as the lapse in time since a win decreases). Similarly, the AttendedAuction

variable reflects the potential existence of a within-period budget or inventory constraint. In the

event bidders have insufficient space or capital to accommodate multiple auction wins, their mar-

ginal likelihood of bidding in additional auctions will decrease (else bidders will either bid on all

available auctions (if their marginal value of bidding exceeds the marginal cost) or none). βCb0j is

a bidder-specific constant to account for heterogeneity in bidder costs. We use log costs to ensure

costs are positive. We assume βCb0j has the following hierarchical structure to capture heterogeneity

in costs across bidders.

βCb0j ∼ N
³
β̄
Cb
0 , (φCb)−1

´
(7)

β̄
Cb
0 ∼ N(β

Cb

0 , σ20Cb)

φCb ∼ Gamma(aCb0 , bCb0 )

On the surface, it may appear that bidder valuations and costs are not separately identified,

as a concurrent increase in both would yield the same bidder profits and thus bidding behavior.
16To see this, consider equation (A-47) in the Appendix. When variances are not constrained to 1, (A-47) can be

rewritten as

L ∝
\
ijtn

exp

⎛⎜⎝−
�
logCb

ijtn − βCb0j − ZCb

ijtnβ
Cb
�2

2σ2

⎞⎟⎠ .

Because Cb
ijtn is not observed, this expression can be rewritten as

L ∝
\
ijtn

exp

⎛⎜⎝−
�
(logCb

ijtn)/σ − (βCb0j /σ)− ZCb

ijtn(β
Cb/σ)

�2
2

⎞⎟⎠
from which it can be observed the parameters are identified only up to a scale, analogous to a probit or logit model.

19



Observations of positive bids reveal the bidder’s valuation, which in turn helps to determine their

cost. With costs known, together with our parametric specification regarding the costs, it becomes

possible to infer values in auctions wherein bids are not observed (that is, a bidder decide not to

bid). In addition, costs have a common parametric specification across different items. For those

observations with the same covariate values for bidder costs, the variation in bidder behavior across

these items helps to identify bidder valuations because differences in costs cannot explain differences

in bidding behavior (as these costs are constant across bidders in this case).

3.4 The First Stage — Seller’s Model

The seller chooses the optimal number of items to list in order to maximize their expected return.

We first derive the expected revenue a seller obtains from listing an item (links S3 and S4 in Figure

2), and then use this revenue in conjunction with seller costs (links S1 and S2) to derive the expected

return for listing a specific number of items (links S5-S7) and the optimal number of items to list

(link S8).

3.4.1 Expected Revenue for Listing An Item

Seller Expected Revenue E(Rs
itn|·) Without Secret Reserve Price For auctions without

secret reserve prices, the seller receives the second highest bid when there are at least two bidders

competing. When there is only one bidder, the seller receives the minimum bid MinBidit. If there

is no bidder, E(Rs
itn|·) = 0. We condition the seller revenue on each of these events, as discussed

next.

Number of Bidders ≥ 2. For the case where there are at least two bidders, denote α as the

second highest bid among bidders and x∗α as the threshold (defined in Theorem 1) associated with

the bidder bidding α.

Theorem 2 Given μit, σ and market size J, the conditional distribution of α, the second highest
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bid, can be expressed as

p(α|μit, σ, J) = J (J − 1) ·
( R

Cb
ijtn
{[G(α|μit, σ)−G(x∗ijtn|μit, σ)]Fx∗ (α)
+G(x∗ijtn|μit, σ)}f(Cb

ijtn)dC
b
ijtn

)J−2

×
(
1−

R
Cb
ijtn
{[G(α|μit, σ)−G(x∗ijtn|μit, σ)]Fx∗ (α)
+G(x∗ijtn|μit, σ)}f(Cb

ijtn)dC
b
ijtn

)
Z
Cb
ijtn

g(α|μit, σ, α ≥ x∗α)f(C
b
ijtn)dC

b
ijtn (8)

where Cb
ijtn is the bidding disutility associated with the focal auction and f(C

b
ijtn) is the distribution

density of Cb
ijtn; Fx∗ (·) is the distribution of x∗ijtn and Fx∗ (α) indicates the probability of α ≥ x∗ijtn;

x∗· is defined in equation 5.

Proof: See Appendix A2.

The term in the first set of braces represents the probability J − 2 bids lie below α; the term in

the second row represents the probability that the highest bid is greater than α; and the term in

the third row is the probability the second highest bid is α. The integrals yield expectations over

the unobserved bidder costs. The term J reflects the number of permutations in which α can be

the second highest bidder. Similarly, the term (J − 1) reflects the fact that any bidder among the

(J − 1) bidders (J bidders less the second highest one) can be the highest bidder.

Number of Bidders = 1. When there is only one bidder, just that bidder’s valuation exceeds

their threshold while the other J−1 bidders do not. That yields the probability of the seller earning

MinBidit as the following

Pr(Rs
itn =MinBidit) = J · {

Z
Cb
ijtn

G(x∗ijtn|μit, σ)f(Cb
ijtn)dC

b
ijtn}J−1 (9)

×[1−
Z
Cb
ijtn

G(x∗ijtn|μit, σ)f(Cb
ijtn)dC

b
ijtn]

That is, for (J − 1) bidders, each has a valuation lower than the threshold, yielding G(x∗ijtn|μit, σ).

This is the term in the first set of brackets on the right hand side. Given that Cb
ijtn is a random vari-

able from the seller’s perspective, this term must be integrated out. The second term pertains to the

one bidder whose valuation exceeds their threshold, leading to [1−
R
Cb
ijtn

G(x∗ijtn|μit, σ)f(Cb
ijtn)dC

b
ijtn].

Moreover, as this sole bidder is chosen from among J bidders, the final result needs to be multiplied

by J potential bidders that can have the highest bid (that is,
¡J
1

¢
).
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Combining equation 8 and 9 yields the conditional expected return of the seller,

E(Rs
itn|μit, σ, J) = E(α|μit, σ, J) +MinBidit · Pr(Rs

itn =MinBidit) (10)

=

Z ∞

MinBidit

αp(α|μit, σ, J)dα+MinBidit · Pr(Rs
itn =MinBidit).

Seller Expected Return With Secret Reserve Price The results developed in the case of

no secret reserve can be generalized as follows to the case of a secret reserve. First, in the case

of multiple bidders, if the second highest bid is lower than the secret reserve, the seller keeps the

item. Thus the return is zero. Second, in the one bidder case, the seller retains the item because

the winning bid must be MinBidit and is therefore lower than the secret reserve.17 Hence, the

expected return becomes

E(Rs
itn|μit, σ, J) = E(α|μit, σ, J, α ≥ Reserveit) (11)

=

Z ∞

Reserveit

αp(α|μit, σ, J)dα

3.4.2 The Seller Listing Decision

Seller Profits Prior to bidding, the seller must decide whether to list an item, and if so, how

many of the items to list.18 This decision is analogous to the seller choosing the optimal supply

of goods at a subgame level. We assume that seller i’s conditional expected profit given listing

qit units of item t is:19

πit(qit) = qit · (1− commission)E(Rs
itn|·)− Cs

it(qit)− qit · feeit (12)

where commission is the commission rate charged by the auction house; feeit is the unit listing fee

paid to the auction site.20 Other than the listing fees and commissions paid to the auction house,

there exist acquisition or opportunity costs for an item. The cost is assumed to depend on the

item’s prevailing market value and the number of units listed, qit. Owing to finite supply, as the

seller endeavors to source more units acquisition becomes more difficult. This leads to an increase
17Although the seller can still choose to sell the item if the realized final price is lower than the secret reserve, we

assume the seller assigns zero probability to such an event when calculating ex ante expected return.
18We also estimated a model wherein the minimum price decision is endogenous. The endogenous minimum price

model yields a lower log marginal likelihood for the listing decision and bids (-21278.41 vs. -22150.82).
19Under the assumption that listing features are exogenous, a unique equilibrium is assured with a quasi-concave

revenue function and a convex cost function.
20Given that commissions are tiered in our data, we compute commissions incumbent upon the auction’s closing

price. However, to facilitate exposition, we omit tier-specific commission subscripts throughout the paper.
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in the marginal opportunity cost of obtaining these items. Denote Cs
it(qit) as the total acquisition

cost for listing qit units. Increasing marginal costs imply that Cs
it(qit) is convex in qit. Moreover,

our specification implies that the expected revenue is quasi-concave in qit, which is a necessary

condition for a concave profit function and ensures an optimum exists. The seller’s problem is to

find the optimal qit that satisfies

qit = argmax
qit

πit(eqit) (13)

i.e., any deviation from qit (i.e., selling fewer or more items) will not result in a higher profit for

the seller. As qit can include zero, the decision of whether to list, as what number of items to list,

is endogenous.

Equation 13 indicates whether a given seller will list qit items. This decision is affected by the

number of competing sellers and participating buyers. As the number of competing sellers increases,

the total number of items listed to bidders can increase. Yet equation 6 places a constraint on the

number of auctions in which a bidder can concurrently bid. In the presence of an increased number

of items listed, this constraint lowers the likelihood that any given seller will be able to sell their

items as an increase in the total listings leads to fewer bidders per auction listed. In the presence

of a fixed listing fee this lowers the expected return from listing an item. Therefore, an increase in

the number of sellers leads to a decrease in the expected number of items listed by each seller. One

implication of this is that the auction house can manage this decrease in items listed per seller by

lowering per item fees.

Likewise, the number of active buyers and their respective valuations affect the seller’s listing

decision. The expected return in equation 12 is a function of the second highest bid, as noted

in equation 10. The second highest bid is, in turn, a function of the number of bidders J and

their bidding thresholds x∗ as indicated in equation 8. As more bidders become active (i.e., x∗

decreases — which could occur if the mean of the valuation distribution increases) or the universe

of bidders becomes larger (J increases — for example, the bidding population become larger) then

the seller return increases and more sellers will list. In sum, the number of items listed affects

buyer participation and the buyer participation affects the number of items listed. Hence, there is

a structural link between seller and bidder behaviors.
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Seller Acquisition Cost, Cs
it Given the foregoing concavity assumption, we specify the prior

distribution of seller i’s acquisition cost to be:

Cs
it = βCs0i BOOKV AL

βCs1
it q

βCs2
it + eCsqit (14)

We include a seller-specific constant term, βCs0i , to capture unobserved heterogeneity in seller costs.

eCsqit is an i.i.d. error term following normal distribution with mean 0 and variance θ−1 (the prior

specifications for θ and other parameters are detailed in Appendix A3.1). The stochastic terms are

known by the seller itself but unobserved by researchers. Delivery costs, which are unobserved, can

affect both the average seller costs βCs0i and per item costs βCs2 (Lewis et al. (2006)). These costs,

which are unobserved, can affect both the average seller costs βCs0i and per item costs βCs2 . It is

notable that observed variations in qit over the duration of the data leads to estimated variations

in the costs Cs
it over this duration. In turn, these variations in acquisition costs inform how sellers’

listing behaviors vary with changes in costs. In this fashion we can extrapolate how other costs

(such as changes in fees) affect listing behavior even if such changes are not observed in the data.

Stated differently, though there is no variation in fees over time from which to impute the seller

listing elasticity, we can use the link between acquisitoin costs and listings to asess how hypothetical

changes in fees affect listings.

We adopt the following hierarchical structure for the heterogenous constant term:

βCs0i ∼ N
³
β̄
Cs
0 , (φCs)−1

´
(15)

β̄
Cs
0 ∼ N(β

Cs

0 , σ20Cs)

φCs ∼ Gamma(aCs0 , bCs0 )

Similar to the bidder cost, multiple observations of sellers across auctions enable the identifica-

tion of seller cost from valuation distribution (which is an important component determining seller

revenues). In particular, seller costs are identified through the observed bids, bidder costs, and

seller’s listing behavior across multiple auctions.

4 Estimation

We adopt MCMC approach to estimate the model due to the flexibility of Bayesian methods

(Rossi et al. (1996)). In particular, it enables us to readily accommodate latent variables via
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data augmentation, including bidder valuations, bidder disutility and seller profits. Moreover, the

approach enables us to readily estimate a complex model. In this section we define the likelihood

and in the Appendix A3 we detail the sampling chain and priors.

4.1 The Conditional Likelihood of Bidder Model

Given the threshold level x∗ijtn, the conditional likelihood of bidder j bidding on auction itn is,

(pbidijtn|μit, σ,MinBidit, C
b
ijtn) = [g(bijt·|μit, σ)]I

bid
[g(v∗ijtn|μit, σ,MinBidit, C

b
ijtn)]

1−Ibid (16)

where bijt· is the bidder’s revealed valuation from either a) the current auction n or b) the bidder’s

most recent bid on a like item (e.g., the same coin type) in a previous auction; Ibid equals one

if the bidder’s valuation has been revealed; v∗ijtn is a partially latent valuation drawn from the

valuation distribution if Ibid = 0. The first term in (16) reflects the case where a bid is observed,

and the likelihood of observing bijt· on this instance is g(bijt·|·). The second term reflects the case

where a bid is not observed (Ibid = 0). In this case, the latent valuation v∗ijtn is obtained from the

distribution g(·|·) truncated at x∗ijtn, where x∗ijtn is defined in Theorem 1.

The product of equation 16 across ijtn gives the conditional likelihood of bidder model,

Lbidder =
Y
i,j,t,n

(pbidijtn|·) (17)

4.2 The Conditional Likelihood of Seller Model

The decision regarding the number of items to list, qit, enters the likelihood as follows:

plistit (qobserved = qit|·) =
Y

qit 6=qit

Pr{πit(qit) ≥ πit(eqit 6= qit)} (18)

That is, the estimated parameters should maximize the likelihood such that any deviations from the

observed qit can not result in extra profit. In practice, given the fact that eqit can assume an infinite
number of values, it is impossible to calculate πit(eqit 6= qit) for all potential values of eqit. Instead,
we approximate the likelihood by considering only those profits for a set of eqit’s that are within
an arbitrarily large range around the observed qit. Given that the profit function is assumed to be

concave, any dramatic deviation of eqit from the observed qit is unlikely to achieve a higher profit.

Therefore the probability of Pr{πit(qit) ≥ πit(eqit 6= qit)} approaches 1. Hence, our approximation

is not likely to be very restrictive.
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The conditional likelihood of seller’s model is the product of plistit across i, t,

Lseller =
Y
i,t

plistit (qobserved = qit|·) (19)

Hence the conditional likelihood for the integrated bidder and seller model is

L = Lbidder · Lseller (20)

4.3 Augmented Full Posterior Distribution

By conditioning on the unobserved latent variables, v∗ijtn, πit and Cb
ijtn, the model likelihood can

be written as follows,

Laugmented|Ω =
R
Cb
ijtn

R
v∗ijtn

R
πit(qit)

R
πit(qit)

(Lbidder|v∗ijtn,Cb
ijtn)(L

seller|v∗ijtn,Cb
ijtn, πit(qit), πit(eqit))Y

i,j,t,n

p(Cb
ijtn|ΩCb)

Y
i,j,t,n

p(v∗ijtn|Ωv∗) (21)

Y
i,t

p(πit(qit)|Ωq)
Y
i,t,qit

p(πit(eqit)|Ωq)dπit(eqit)dπit(qit)dv∗ijtndCb
ijtn

where Lbidder is the bidder model likelihood from equation 17, Lseller is the seller model likelihood

from equation 19, Cb
ijtn is the latent bidder disutility from equation 6, v∗ijtn is the latent bidder

value from equation 1, πit((eqit)|·) and πit((qit)|·) are latent profits from equation 12 and Ω =

{ΩCb ,Ωv∗ ,Ωq,Ωq} are the model parameters. As the latent variables are unobserved, we must

integrate over these variables to compute the likelihood. We perform this integration via an MCMC

approach using data augmentation. One advantage of this approach is that it yields estimates for

the distribution of the latent variables which become useful in our policy analysis (for example, we

can estimate the unobserved listing costs for each seller and valuations of each bidder). Another

advantage of this approach is that it facilitates the integration.

The augmented full posterior can then be constructed by multiplying the likelihood by the prior,

p(Ω|Laugmented) ∝ (Laugmented|Ω) ∗ p(Ω)

where p(Ω) is the prior distribution for the model parameters. More details regarding the MCMC

sampling chain and the choice of priors are presented in Appendix A3.

In Appendix A4, we present the design and results of a simulation that indicates our sampling

chain is effective at recovering the true model parameters, enhancing our confidence in model
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identification. All simulated parameters lie well within the 95% posterior predictive interval for

these simulates.

5 Results

Table 6 reports the parameter estimates for the auctions model using the Celtic coin data. The

Table indicates that book value and seller feedback have a positive effect on bidder valuations. For

each $1.00 increase in book value, on average bidders value the item an additional 90 cents. A

$1.00 increase in the minimum bid implies an 18-cent increase in bidder value and this may reflect

the belief that a minimum bid is a signal of quality. Consistent with Ariely and Simonson (2003)

and Reiley (2006) we find a positive correlation between minimum price and auction price; for

each dollar increase in the seller’s minimum price, the bidder value increases $0.18. There is no

significant effect of a secret reserve on bidder valuations after controlling for the minimum bid. This

null result may arise from the sellers’ infrequent use of this feature (in just over 2% of auctions) or

because the presence of the secret reserve is not as informative as its level (which is not observed).

Storefronts add 76 cents to the mean valuation of an item. The presence of a gallery leads to an

increase in value of 54 cents while the presence of a subtitle increases average value by 56 cents.

The fee charged to a seller for the gallery is 25 cents while the fee for the subtitle is 50 cents; both

fees lie within the posterior 95% predictive interval suggesting that the pricing of these features is

in line with the additional value they generate. In sum, item-specific, seller-specific characteristics

of the auction and marketing all have material effects on bidders’ perceived valuations of the goods.

The number of auctions attended increases one’s bidding disutility, suggesting decreasing mar-

ginal returns for auctions. Meanwhile, consistent with an inter-temporal budget constraint, we find

that a bidder’s likelihood of attending new auctions decreases if they won recently (or, alternatively,

there are decreasing marginal returns for acquiring an additional item). A significant positive con-

stant cost exists. The constant implies a fixed bidding disutility in the neighborhood of $5.37.

Since we use a log-log specification for bidder disutility, the parameters for AttendedAuction and

Lapse can be interpreted as elasticities or sensitivities. Hence the bidding disutility elasticities for

concurrent auctions attended and lapse of time are around 0.79 and −0.31, respectively.

Acquisition opportunity costs for a seller increase with an item’s book value. In particular, given

the log-log specification, one can interpret the parameters as elasticities. For a 1 percent increase in
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Table 6: Posterior Means and Standard Deviations of Model Parameters

Median 95% Interval
Valuation Distribution
μ
Constant 0.59* (0.31, 0.82)
Book Value 0.90* (0.89, 0.92)
(Seller Feedback)/100 0.03* (0.02, 0.04)
Minimum Bid 0.18* (0.15, 0.21)
Secret Reserve Dummy 0.28 (-0.16, 0.99)
Store Dummy 0.76* (0.32, 1.21)
Gallery Picture Dummy 0.54* (0.04, 0.79)
Subtitle Dummy 0.56* (0.02, 2.21)

σ
Constant 4.00* (3.84, 4.41)

Bidder Disutility
Number Auctions Attended 0.79* (0.70, 0.95)
Lapse Since Last Winning -0.31* (-0.34, -0.28)
Mean Individual Constant 1.68* (1.50, 1.78)

Seller Acquisition Cost
Book Value 0.86* (0.65, 1.07)
Number of Listings 1.27* (1.02, 1.55)
Cost Error Variance 0.95* (0.65, 1.19)
Mean Individual Constant 1.05* (0.98, 1.13)

Log Marginal Likelihood -21278.41

the book value, there is an impact on the seller’s total cost in the amount of 0.86 percent. Further,

the elasticity of seller cost for the number of listings is 1.27. The mean of the seller-specific constant

term is 1.05. As the constant term serves as a scaling factor in our formulation of seller costs, the

finding that this term is close to one suggests the scaling effect is immaterial. In other words, seller

acquisition costs are largely determined by per item costs and the opportunity cost for multiple

listings.

To illustrate the fit of our model, we simulate bid values within sample based on our estimates

and data. We then compare the observed bid/book ratios with the simulated ratios. Figure 4

shows the comparison between the two variable distributions. The model fits the mean bid to

book ratio very well (Observed = 0.48, Simulated = 0.48). The median is also comparable (0.31

vs. 0.39). Overall, the fit seems good, suggesting our model specification captures the observed

bidding behaviors well.

Of note, we contrast the full model to one wherein we model only bidder behavior. The bidder-
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Figure 4: Observed Bids Vs. Simulated Bids

model parameter estimates are virtually identical to those obtained using the full model though

the full model yields better predictions regarding bidder behavior, potentially suggesting gains in

efficiency arising from joint estimation (the log-marginal likelihood for bidders in the joint model

is −20062.5 vs. −20265.2 in the buyer only model). We speculate that the similarity in bidder

parameter estimates across the bidder only and bidder-seller models reflects independence in errors

across the bidder and lister models; this finding would be less likely to obtain in the face of omitted

variables that could induce correlated errors. Though our results indicate joint estimation is more

likely an issue of efficiency than bias, it is important to note that estimates pertaining to seller

behavior are requisite for engaging the policy simulations that underpin the goals of this paper.

Hence our research could not proceed without the seller model.

6 Managerial Implications

Whereas the parameter estimates are informative about bidder and seller behavior, they offer little

explicit guidance to the auction house regarding its marketing strategy. We consider three strategic

implications: a manipulation of auction house fees (which is informative about optimal pricing),
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the attrition of a customer (which is informative about customer value), and the effect of seller

characteristics on auction house revenues (which places a value on a seller’s reputational capital).

6.1 Auction House Pricing

6.1.1 Pricing Elasticity and Optimal Pricing

Using the model estimates, one can assess the effect of the auction house pricing strategy on the

market equilibrium number of listings, bids and closing prices in the considered category.21 As noted

above, we can infer the price-demand relationship even in the absence of any historic variation in

fees because the structural model is informative about the latent bidder and seller costs and the

bidder valuations. The price-demand relationship enables us to infer how a change in auction

house fees affects seller profits, hence the seller listings and the resulting bidder demand. With

information on the number and closing price of auctions, the auction house can assess how a fee

change affects its revenue (which is equal to the total merchandise volume in the market times the

percent commission plus the total number of listed items times the listing fee per item). In Table 7

we compute auction fee price elasticities by simulating the effect of a 1% decrease in current listing

fees and commissions on profits.22

Table 7: Fee and Commission Price Elasticities

Percentage Change 1% Decrease in Commissions 1% Decrease in Listing Fees
Seller Profit 3.90 (1.67, 5.90) 1.93 (0, 4.94)
Number of Auctions 2.04 (0, 8.95) 0.68 (0, 1.99)
Auction Website Revenue 0.86 (0.09, 1.85) -0.08 (-0.11, -0.03)

Table 7 indicates that a decrease in fees improves seller profits, leading to more listings and more

gross volume sold on the site.23 However, the effect is much larger for commissions than listing fees.

21Note that our model assumes that buyers and seller behave optimally while our simulation presumes the auction
house does not. Prima facie, this seems inconsistent. However, there exist some differences between these parties.
First and foremost, the firm has indicated directly to us that its pricing does not follow an elasticity-based approach
but that it is more heuristic based. Hence they are interested in using elasticity based pricing to inform their decisions,
which is a key goal of this exercise. Second, buyers and sellers face repeated observations and play auctions over
many occasions. This suggests the potential for learning and feedback, as such, the “as if” optimality assumption
may be reasonable (Amaldoss and Jain (2005)). In contrast, little price variation exists for the auction house making
it difficult to learn.
22The auction house utilizes a tiered commission system. To protect the confidentiality of the data supplier, we

do not reveal the actual commissions. To compute the elasticities, we decrease the commission at each level by 1%.
Likewise we reduce the listing fees by 1%.
23We do not report actual revenues to protect the confidentiality of the data provider. However, the actual revenue
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As a result, the overall increase in volume at the auction site arising from a commission decrease

generates enough total revenue to offset the reduction in per item commissions. In contrast, the

increased volume arising from reduced per item listing fees does not offset the loss in the per item

listing fee. All 95% posterior predictive intervals for these fee elasticities exclude zero. Accordingly,

we would recommend that the auction house shift its fees for this category from commissions to

listing fees by reducing the commissions and increasing the listing fees. At a minimum we would

recommend that they refrain from raising commissions further by raising listing fees instead.

This recommendation can in part be explained by noting how different fee types affect sellers.

Per item fees are an example of a uniform pricing strategy whereas commissions tend to dispro-

portionately affect higher value items. As a result, a decrease in commissions disproportionately

affects high value sellers relative to a decrease in fees. Simulating the effect of a 2 point decrease

in commissions, we observe more high book value items listed and high feedback sellers listing

more items relative to the case wherein per item fees are decreased. As higher book values and

reputations lead to increased item valuations, a reduction in commissions disproportionately affects

these groups thereby leading to an increase in high valuation listings. Given that these high val-

uation items generate higher profits for the seller, a small reduction in commissions can lead to a

considerable increase in seller profits for such items and a concurrent increase in listings. We note

that these effects are likely to be amplified in categories wherein valuations and feedback scores

assume greater importance, such as art. To further assess the degree to which listing fees should

be increased and commissions reduced for the considered category, we create a 9 by 6 grid of alter-

native commission and listing fee structures and estimate the house revenues associated with each

fee combination. Table 8 reports the result of this analysis.

The upper left corner of Table 8 reflects the current level of listing fees and commissions. Each

subsequent row indicates the effect of a one quarter point decrease in commissions. Thus, the last

row indicates a two point decrease in commissions.24 Each subsequent column from left to right

indicates the effect of a 5% increase in the listing fee. Thus, the last column indicates a 25%

increase in listing fees from the current level. The cells in Table 8 report the percentage change

in auction house revenue for each combination of commission and listing fees; in general, revenues

lies within the 95% posterior predicitive interval for estimated revenues.
24We base the two point decrease upon the highest commission rate (which is associated with the lowest tier of

closing prices). We then translate this point decrease to a percentage and apply it to the other pricing tiers.
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Table 8: Revenue Percentage Changes with Alternative Pricing Schedules

Commissions (points)\Fees (%) 0 5 10 15 20 25
0 0 0.37 0.63 0.96 0.76 0.13

-0.25 1.04 1.48 1.74 1.77 1.21 0.30
-0.50 1.11 1.61 1.84 2.03 1.37 1.30
-0.75 1.19 1.87 2.19 2.89 2.66 1.76
-1.00 1.16 1.77 1.97 2.87 2.49 1.65
-1.25 1.12 1.38 1.68 1.90 1.61 1.33
-1.50 1.01 1.19 1.48 1.73 1.53 1.07
-1.75 0.97 1.18 1.48 1.71 1.52 0.81
-2.00 0.31 0.81 0.93 1.39 0.87 0.39

increase with lower commissions and higher fees. The maximum revenue increase of roughly 3%

is associated with a 0.75 point reduction in commissions and a 15% increase in listing fees. Even

were the auction house not to decrease commissions, it is possible to increase revenues by nearly

1% with a 15% increase in listing fees. To the extent similar increases could be realized across

categories, a 3% increase could prove quite considerable.

6.1.2 Price Customization

Recently, Zhang and Wedel (2007) have proposed that the pricing customization across customers

enhances profits in the context of frequently purchased grocery goods. We therefore seek to assess

whether the result is similar in the context of auctions. One reason to believe customization may

be efficacious is the relatively high dispersion in the value of items listed for sale in the auction

context (book values range from $3 to $675). Sellers of high value listings (defined as those items

with greater value than the median Book Value) stand to gain more from changes to commissions

whereas sellers of low value items stand to gain more from changes in per item listing fees. To explore

whether we can improve upon the pricing strategies in Table 8, we proceed as follows. Instead of

increasing fees and lowering commissions to all sellers, we increase fees and lower commissions only

for high value sellers. Given sellers of high value items are more sensitive to commissions and less

sensitive to fees, targeting a price change to these sellers could prove profitable. Table 9 reports

this analysis.

Comparing the first columns of Table 8 with those in Table 9, we observe that a 0.75 point
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Table 9: Revenue Effects with Targeting of Commissions and Fees

Commissions (points)\Fees (%) 0 5 10 15 20 25
0 0 0.34 0.82 0.99 0.73 0.69

-0.25 1.00 1.37 1.70 1.98 1.26 1.28
-0.50 2.09 2.59 3.47 3.67 2.57 2.37
-0.75 2.93 3.13 3.82 3.91 2.96 2.47
-1.00 2.92 3.07 3.80 3.84 2.59 2.28
-1.25 2.21 2.49 2.62 2.31 2.19 2.00
-1.50 1.02 1.11 1.80 2.02 1.78 1.76
-1.75 0.91 1.03 1.73 1.81 1.91 1.16
-2.00 0.22 0.54 1.07 1.57 1.04 0.43

decrease in commissions (and no change in per item fees) targeted to only the high item value

sellers yields a nearly 3.0% revenue increase in a customized setting but only a 1.2% increase in the

uniform pricing setting. Not only does this triple the revenue gain observed in the non-targeted

pricing setting, it exceeds the maximum potential return of 2.89% when prices are not customized.

Therefore, targeting commissions seems to have a material effect on revenues. Contrasting the first

rows of Table 8 to those in Table 9 yields a comparison between raising per item listing fees to all

sellers with only raising fees to high value sellers (as low value sellers are presumably more sensitive

to fees). As the cells are comparable across the two Tables, we conclude that there is little benefit

to targeting fees relative to targeting commissions. Finally, Table 9 suggests the maximum return

of the proposed customized strategy (obtained with a 0.75 point decrease in commission and a 15%

increase in fee to high value sellers,) to be 3.91% compared to 2.89% from the blanket strategy.

Thus, the potential gain arising from targeted pricing is about 35%. These numbers are in line

with the findings of Zhang and Wedel (2007).

In sum, the joint model of bidder and seller behavior enables us to develop pricing prescriptions

even in absence of any historical pricing variation. Given the total volume transacted in the area

of Internet auctions, the pricing problem is an important one and the proposed model represents

an initial step towards addressing this problem. In principle, other policy simulations are possible

with our model, including an assessment of how a change in auction rules away from sealed bid

second price auctions would affect auction house revenue.
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6.2 Customer Value in a Two-sided Market

Valuing customers has seen increased research attention in marketing in recent years (Kamakura

et al. (2005)). Firms seek to assess customer profitability in order to determine how much to invest

in a given customer (for retention or acquisition), whether to divest an unprofitable customer and

for firm valuation. Yet the customer valuation literature focuses on customer valuation in contexts

where one customer’s presence does not affect another. Valuing customers in two-sided markets is

problematic because of the interaction between bidders and sellers. Exacerbating this consideration

in the context of auctions is the role of competition in customer valuation. Should a seller attrite,

the supply of auctions decreases. Given price increases are permanent, this has two enduring effects:

i) fewer items listed leads to increased competition on the part of bidders for the remaining items,

thereby driving up prices resulting in higher per-auction commissions for the auction house and ii)

higher prices paid by buyers and lesser competition encourages the remaining sellers to list some

additional items which will also generate revenue for the auction house. These factors, which we

denote indirect value effects, will offset the initial revenue lost from a departing seller (denoted direct

value effects) and these indirect effects could be considerable. A similar categorization applies on

the bidder side. When one buyer departs the system, others that remain will bid for the items

thereby offsetting this loss to some degree. However, softer competition among bidders could also

lead to lower prices and therefore fewer items listed on the part of sellers. Thus, the direct value

effect for a buyer in terms of auction revenue is offset to some degree by the presence of other

bidders in the system provided this does not induce too many sellers to depart.

In the absence of a model that captures competitive interactions, it is unclear how to value

customers. The most commonly used practice is to use the direct effect to measure customer value.

However, this approach overstates the value of a customer by ignoring competition. Our solution

to this problem is to conduct a policy experiment wherein a particular buyer or seller is excluded

from the system and compute the change in the equilibrium number of listings and closing prices

of those listings over the duration of the data. By comparing the new equilibrium to the original,

we can compute the short-term value of a customer to the auction house. In doing so, we abstract

away from long-term dynamics such as the growth (diffusion) of bidders and sellers (Gupta et al.

(2006)). It is therefore important to delineate between our short-term measure of customer value

(as in our approach) and the more forward-looking lifetime value metrics often used in marketing
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(Gupta et al. (2006); Kamakura et al. (2005)). Table 10 reports the result of a simulation wherein

the largest buyer and seller, respectively, attrite and the resulting loss in fees to the auction house.

Table 10: The Value of the Largest Customer

Seller Buyer
Dollars Percent Dollars Percent

Direct Value $127 100% $26 100%
Indirect Value −$30 24% −$21 81%
Total Value $97 76% $5 19%

The first row of Table 10 presents the direct value effects or the revenue of the auctions in which

the customer participates, reflecting the total fees arising from the auctions in which the largest

seller and buyer transact (a commonly used metric for valuing a customer in a two-sided market).

The third row reports the equilibrium revenue realized by the auction house when the customer

attrites as computed by our model (we call this the total effect as it is the sum of the direct effect plus

the indirect and opposite effect arising from competition). The second row reports the difference

between the direct effect and the total effect (i.e., the indirect effect). We also compute the relative

percentage of the total effect that arises from the direct and indirect effects. For example, the direct

effect of the largest seller on auction house revenues is $127. The revenue realized by the auction

house were this seller to attrite is $97 (the total effect). Thus, the direct effects overstate the total

revenue loss by $30, or nearly a third ($30/$97). Given that competition does not offset most of

the loss, we conclude that products sold by this vendor in this market are not altogether highly

substitutable with the other products being auctioned. A rather different conclusion is realized on

the buyer side where the largest buyer generates $26 in direct revenue but only $5 in total revenue,

suggesting the indirect effects to be $21. When this buyer leaves the market, others fill the void.

Accordingly, the direct effects overstate the total effect by over 400%.

As noted above, indirect effects manifest as a change in equilibrium prices and supply. We can

apportion the indirect effects across prices and supply in order to ascertain which effect is greater.

This decomposition yields insights into whether the largest customer is more likely to affect listings

(driven by seller behavior) or the closing price per listing (driven by bidder behavior). Let N0

denote the number of closing auctions listed by competing sellers prior to attrition of the largest

seller and p0 denote the N0 ∗ 1 vector of unit revenues (commission plus listing fees) of those
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auctions. Similarly, we denote the number of auctions and vector of unit revenues after the largest

seller attrites as Ns and ps. Using this notation, we compute i) the indirect effects arising solely

from a change in unit revenues holding the number of auctions fixed, (
NsP
k=1

psk −
NsP
k=1

p0k) and ii)

the expected change in revenue arising from a change in the number of auctions holding the unit

revenues fixed, (
NsP
k=1

p0k −
N0P
k=1

p0k). We use a similar decomposition to assess the effect of buyer

attrition. Table 11 presents the results of this analysis.

Table 11: Indirect Value Due to Listings and Prices

Seller Buyer
Value Percent Value Percent

Indirect Value $30 100% $21 100%
Effect Due to Adjustment in Listings $12 39% $12 57%
Effect Due to Adjustment in Unit Revenues $18 61% $9 43%

Columns 2 and 3 report the results of this analysis for the attrition of the largest seller and

columns 4 and 5 report the analogous results for the attrition of the largest buyer. Of the $30

indirect competitive effects that offset the total effect of the largest seller’s attrition, about 2/5

($12) of the competitive effects are due to other sellers listing more items and about 3/5 ($18) of

the competitive effect is due to higher prices that arise from bidders bidding on fewer goods on the

market. Thus, seller attrition plays a major role on both competitor behavior (items listed) and

bidder behavior (bids).

With regard to the departure of the largest buyer, about 2/5 ($9) of the indirect effects can

be attributed to the unit revenue change and 3/5 ($12) can be accounted by changes of number of

auctions. Although the biggest bidder attrites, other bidders step in to fill the void and generate

$21 to largely offset the $26 loss. Overall we conclude that, under a two-sided market such as

online auction, using direct revenue as the metric may overstate a customer’s value considerably.

To accurately measure the value of a customer, a firm needs to take into account the network

externalities caused by the customer.

6.3 Elasticities of Seller Feedback Scores

As noted in the literature on signalling game, seller feedback should play a role in transmitting the

quality of their product leading to increased bids (Cabral and Hortacsu (2006)). Table 6 confirms
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this proposition suggesting an increase of 100 in the seller feedback score leads to an average increase

in customer valuation of 3 cents. However, the magnitude of the feedback elasticity is unclear as a

change in its value (holding other seller’s feedback scores fixed) will induce other sellers to change

their listing behaviors, which in turn has a downstream influence on bidders. In Table 12 we report

the effect of a 1% increase in seller feedback scores on the seller’s and auction house’s revenues.

Table 12: Seller Feedback Score Elasticity

Percentage Change 1% increase in Seller Feedback Scores
Seller Profit 0.15 (0.04, 0.19)
Number of Auctions 0.16 (0.06, 0.65)
Auction Website Revenue 0.12 (0.11, 0.13)

We find that a 1% increase in reputation leads to a 0.15% increase in seller profits assuming no

competitive reaction in reputation. Using our estimates of cost, we can compute the break even

value for increasing reputational capital. As our model estimates suggest that costs are roughly

half of seller revenues, this calculation implies that if the cost of increasing reputation by 1% is less

than 0.30% of revenue, then it is profitable to do so. In practice, the 0.30% threshold is an upper

bound because it is reasonable to conjecture that competing sellers will also raise their reputation

scores in response.

7 Conclusion

Internet auctions have grown exponentially over the past decade and are now a major world wide

source of transactional volume. In spite of this ascendancy, few econometric models exist to explain

the role of seller behavior in the context of auctions. Seller behaviors are of interest because a)

these affect the optimal policy on the part of the auction house (such as the fee structure and

auction design), b) seller behaviors affect the choices of bidders, which suggests the traditional

assumption of exogenous seller behavior in the empirical IO literature may be questionable, and c)

seller behavior is of interest in its own right (in assessing customer value, for example).

We redress this consideration via a structural model of seller and bidder behaviors across auc-

tions. We posit sellers will list if the return from doing so exceeds their respective costs. Likewise,

we presume the bidders will bid if the expected return from doing so exceeds their respective costs.
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An important component of the model is its integration of bidder and seller behavior. Sellers, when

deciding to list, must consider the bids likely to materialize if they list and also the potential of

competitive listings. Likewise, bidders must consider the number of auctions across which they

can bid. In this fashion, the behaviors of the two groups are linked. This linkage exemplifies a

two-sided market wherein bidders and sellers interact on a common platform (Rochet and Tirole

(2006)) and extends structural models of auctions into this domain.

Accordingly, we develop an empirical structural model which rationalizes bidder and seller

behavior under the auction context. We estimate this model using six months of auction data for

Celtic coins provided by an auction house. The data are consistent with an independent private

value auction. We use MCMC techniques to estimate the costs and valuations that would be

consistent with the bidding and listing behavior observed in the data. Once these are known, it

becomes possible to assess the role of fees on equilibrium listings. That is, as fees rise, seller profits

fall and they are less likely to list. Bidders, faced with fewer auctions, will increase their bids to

win. The net effect can be determined in this fashion.

The estimates from our empirical model indicate that item characteristics (such as its book

value), seller characteristics (their feedback scores), and marketing tools (minimum bid, the use of

a store front, and additional item information revealed by a subtitle and a picture) have significant

impacts on bidder valuations and thus their bids. We further develop insights into bidder and seller

costs and valuations, such as the finding that a 1% increase in book value on average increases

seller costs by 0.86%.

Using these results, our policy experiment indicates that an increase in listing fees will increase

auction house revenues while an increase in commissions will decrease them. By searching over a grid

of values in the neighborhood of its current fees, we find that the change in fees and commissions

can bring an increase of nearly 3% in auction house revenues for the Celtic coin category. The

intuition behind this result is that fees exemplify a uniform pricing policy whereas commissions are

a form of high value pricing discrimination. As such, a decrease in commissions has a large effect

on the profitability of high valuation items (such as those with a high book value and listed by high

reputation sellers) leading to a large increase in listings for such items. Accordingly, we expect our

finding that pricing should be reallocated toward fixed fees to be amplified in categories with more

high valuations items and attenuated in categories with lower valuation items. We build further
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upon this intuition by considering a targeted pricing strategy wherein high value users face lower

commissions and higher per item fees than low value users. We find that customized pricing can

increase revenues by 35% over the uniform pricing solution.

The approach developed herein is also useful for assessing short-term customer value in two sided

markets. Customer value is relevant to firms seeking to assess how much to invest in retaining or

acquiring customers and, to date, this literature has been silent on the value of customers in the

context of two-sided markets. The primary information available to value a customer (such as

a seller) is the revenue that customer generates for a firm. However, such a valuation fails to

account for competitive effects such as the tendency of bidders to switch to other sellers when a

seller attrites and the tendency of other sellers to list more items. In general, we find approaches

that ignore such indirect effects to overstate customer value of the seller by nearly a third and the

value of a buyer by over 400%. We further apportion these indirect seller effects into an increase in

the number of listings by competing sellers who seek to capitalize on the departure of competition

and the increase in prices arising from stiffer bidder competition for the remaining items. We find

these effects to be roughly equal.

The complexity of the problem we consider necessitates some simplifications, which also repre-

sent both limits and future research opportunities. In particular, we approximate bidding dynamics

using lagged purchases in the cost function to capture inter-temporal dynamics and multi-auction

bidding that may be induced by an inter-temporal multi-item budget constraint or price expec-

tations. A more complete specification regarding the dynamics might yield some novel insights.

Further research is therefore warranted. Second, consistent with our data, our model utilizes the

private value assumption to simplify the analysis. An extension to the common value setting would

yield interesting insights regarding interactions among bidders. Third, we do not consider com-

petition between auction houses. We believe this is a reasonable approach, as fees constitute a

relatively small component of the overall cost of listing items in this category and because the

large number of bidders and sellers on this site make it less likely that competing sites would

be attractive alternatives to sellers. Nonetheless, inter-site competition is widely unaddressed in

the literature and represents an important direction for future analysis. Fourth, we presume the

auction house is not strategic in its price setting behavior. Though this assumption is predicated

on conversations with price setters at this organization, many firms (e.g., Google and Yahoo!) are
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strategic in their use of pricing mechanisms and it would be interesting to address this issue. Fifth,

we consider listing features to be exogenous. It is unlikely that endogenizing these variables will

yield a unique equilibrium, so it is unclear whether relaxing this restriction will be useful for policy

analysis. Moreover, given the number of potential combinations of these features, it is not clear

that it is possible to solve for all of them. Yet these features represent a source of revenue to the

auction house, and the problem of how to price these is another area of importance to consider;

recent advances in combinatorial optimization could prove fruitful here. In sum, we believe that

the combination of the material economic importance of auctions and the large array of remaining

problems for consideration suggests this is a rich area for future research. We hope our initial foray

into the problem of bidder and seller networks in the context of auctions will lead to further research

in this domain.
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Appendix

A1 Proof of Theorem 1

In a second-price sealed bid auction with independent private values (IPV), the optimal equilibrium

bidding strategy is for participants to bid their respective valuations (Milgrom and Weber (1982)).

Thus, the second highest bid and the price paid by the winner to the seller is equivalent to the

second highest valuation of participants (or the seller chosen minimum bid if the second highest

bid is below the seller minimum). Accordingly, the winning bidder receives a return equal to their

valuation less the price paid to the seller (i.e., the second highest bid or the minimum bid, whichever

is greater) and less the bidder’s latent cost of participating in the auction. Losing bidders receive no

surplus and pay only their latent costs of participation. Bidder j’s expected return for participating

in an auction is therefore given by

E(πijtn) (A-1)

=

Z vijtn

−∞
(vijtn −max(αj ,MinBidit))f(αj)dαj −Cb

ijtn

where αj is the highest rival’s bid and f(αj) is its density. The first term represents the expected

revenue accruing to bidder j from participating in the auction, the second term is the expected

payment to the seller and the third term is the bidding cost. Note that, when αj > vijtn, bidder j

loses the auction and receives no revenue and makes no payment to the seller. Hence the integral

of αj in equation A-1 has an upper limit of vijtn. Bidder j will participate in the auction if and

only if E(πijtn) ≥ 0.

We claim that E(πijtn) is increasing in vijtn. This insight is necessary to establish the existence

of a minimum bidding threshold below which a bidder will not participate in an auction and above

which it becomes always profitable to do so. To show this, note that the partial derivative of
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equation A-1 is25

∂E(πijtn)

∂vijtn
(A-2)

=

Z vijtn

−∞
f(αj)dαj + vijtn · f(vijtn)− vijtn · f(vijtn)

=

Z vijtn

−∞
f(αj)dαj > 0

As this expression is positive, a bidder’s expected return always increases with their valuation. This

implies that there exists a bidding threshold x∗ijtn such that bidder j will enter the auction for any

vijtn ≥ x∗ijtn where x
∗
ijtn is the root of E(πijtn|·) = 0. Accordingly, one can obtain x∗ijtn in the form

of an implicit function by setting equation A-1 to zero:Z x∗ijtn

−∞
(x∗ijtn −max(αj ,MinBidit))f(αj)dαj − Cb

ijtn= 0 (A-3)

Equation (A-3) is incumbent upon the distribution for αj , which is given as follows:

f
³
αj

´
= (J − 1)

( R
Cb
ij0tn

{[G(αj |μit, σ)−G(x∗ij0tn|μit, σ)]Fx∗(αj)
+G(x∗ij0tn|μit, σ)}f(Cb

ij0tn)dC
b
ij0tn

)J−2

Z
Cb
ij0tn

g(αj |μit, σ)Fx∗(αj)f(Cb
ij0tn)dC

b
ij0tn (A-4)

where Fx∗ (·) is the distribution of x∗· . Equation A-4 can be explained as follows. Letting j0 index the

J−1 bidders excluding the focal bidder j,26 αj must be drawn from
R
Cb
ij0tn

g(αj |μit, σ)Fx∗(αj)f(Cb
ij0tn)dC

b
ij0tn

(the third row), i.e., the highest rival bidder has a value drawn from the distribution g
³
αj |·

´
and

the draw is higher than the threshold x∗αj to be a positive bid. The integral over C
b
ij0tn arises from

bidder j’s uncertainty about other bidders’ costs. Further, for αj to be the highest rival bid among

the J − 1 bidders, the remaining J − 2 bidders (other than bidder j and the bidder with value αj)

must have values a) greater than their respective bidding thresholds x∗ij0tn but lower than αj or b)

less than their respective bidding thresholds but higher than αj , or c) less than their respective

25Note that the formula for derivative with respect to the upper bound of an integral is

∂
U x2
x1

f(t)dt

∂x2
= f(x2)

26When there is a secret reserve price, the seller themselves can be considered as an additional “bidder”.
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bidding thresholds but lower than αj . Condition a) gives the first row in the set of braces; condition

b) and c) together give the second row in the set of braces. Hence we obtain the integral in the

second row of equation A-4( R
Cb
ij0tn

{[G(αj |μit, σ)−G(x∗ij0tn|μit, σ)]Fx∗(αj)
+G(x∗ij0tn|μit, σ)}f(Cb

ij0tn)dC
b
ij0tn

)J−2

where Fx∗ (·) is the distribution of x∗· . Because x∗ijtn is define by an implicit function it is difficult to

write this distribution in closed form. Hence we approximate this distribution by using the sample

population distribution of x∗ijtn. This distribution can be obtained by first making draws from the

distribution of Cb
ijtn, then computing x

∗
ijtn(C

b
ijtn). The integral over C

b
ij0tn again arises from bidder

j’s uncertainty about other bidders’ costs. Further, since any of the J − 1 bidders can offer the

highest rival bid, we need to multiply the result by
µ

J − 1
1

¶
= J − 1.

Note that bidders face a different distribution for αj (the highest competing bid) when making

bidding decisions (equation A-4) than sellers face α (the second highest bid) when making listing

decision (equation 8). This is mainly because the bidder calculates a first order statistics while the

seller considers a second order statistics.

A2 Proof of Theorem 2

The second highest bid α has the distribution density
R
Cb
ijtn

g(α|μit, σ, α ≥ x∗α)f(C
b
ijtn)dC

b
ijtn, i.e.,

the bidder has a draw from the valuation distribution g (α|·) and the draw is higher than the bidding

threshold x∗α. The integral over C
b
ijtn is due to the assumption that the seller only has knowledge

regarding the distribution of bidders disutilities but is uncertain about the exact costs for each

bidder. Therefore seller forms expectations about x∗α by integrating over C
b
ijtn. Further, for α to

be the second highest bid, the following two constraints must be satisfied:

1. Among the J bidders, in addition to the top two highest bidders (the winning bid and the

second highest bid, α), there remain J − 2 competitive bidders whose valuations are either a)

higher than their bidding thresholds x∗· but lower than α, or b) below their bidding thresholds,

x∗· ;

2. Among the J bidders, there exists exactly one bidder whose valuation exceeds both α and

their bidding threshold, x∗· .
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The first constraint yields the first set of braces in Theorem 2:( R
Cb
ijtn
{[G(α|μit, σ)−G(x∗ijtn|μit, σ)]Fx∗ (α)
+G(x∗ijtn|μit, σ)}f(Cb

ijtn)dC
b
ijtn

)J−2

(A-5)

where Fx∗ (·) is the distribution of x∗ijtn. Because x∗ijtn is define by an implicit function it is difficult

to write this distribution in closed form. Hence we approximate this distribution by using the

sample population distribution of x∗ijtn. This distribution can be obtained by first making draws

from the distribution of Cb
ijtn, then computing x∗ijtn(C

b
ijtn). Note that the two terms essentially

“break up” the value distribution into a) those values that lie between α and x∗· and b) those values

that lie between x∗· and the lower bound of the value distribution.

The second constraint leads to

1−
R
Cb
ijtn
{[G(α|μit, σ)−G(x∗ijtn|μit, σ)]Fx∗ (α)
+G(x∗ijtn|μit, σ)}f(Cb

ijtn)dC
b
ijtn

i.e., the complement of events represented by terms in the braces of equation A-5. This becomes

the second set of braces in Theorem 2. Again, the integrals in both constraints are due to the

randomness of Cb
ijtn. Further, since any of the J bidders can be the second highest bidder, we need

to multiply the result by
µ

J
1

¶
= J . Similarly, any of the (J − 1) bidders (other than the second

highest one) can be the highest bidder, we also need to multiply the result by
µ

J − 1
1

¶
= J − 1.

A3 MCMC Sampling Chain

A3.1 Priors

We run the sampling chain for 20,000 iterations; the first 10,000 iterations are used for burn-in and

the remaining 10,000 are used for sampling. Based on inspection of the plots of the draws against

iterations, we conclude the chain converges after around 4,000 iterations. The priors use a diffused

variance of 100; examination of the final results shows that the choice of the variance is at least

the order of magnitude greater than the variance of posterior distributions, which assures a proper

but diffused prior (Spiegelhalter et al. (1996), Gelman et al. (2004)). We now detail the priors for

the sampling chain.
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Priors Selected Value
Valuation Distribution
μ

Constant, βμ1 βμ1 ∼ N
³
μβ1 , σ

2
β1

´
μβ1 = 0, σ

2
β1 = 100

Book Value, βμ2 βμ2 ∼ N
³
μβ2 , σ

2
β2

´
μβ2 = 1, σ

2
β2 = 100

Seller Feedback/100, βμ3 βμ3 ∼ N
³
μβ3 , σ

2
β3

´
μβ3 = 0, σ

2
β3 = 100

Minimum Bid, βμ4 βμ4 ∼ N
³
μβ4 , σ

2
β4

´
μβ4 = 0, σ

2
β4 = 100

Secret Reserve Dummy, βμ5 βμ5 ∼ N
³
μβ5 , σ

2
β5

´
μβ5 = 0, σ

2
β5 = 100

Online Store Dummy, βμ6 βμ6 ∼ N
³
μβ6 , σ

2
β6

´
μβ6 = 0, σ

2
β6 = 100

Gallery Picture Dummy, βμ7 βμ7 ∼ N
³
μβ7 , σ

2
β7

´
μβ7 = 0, σ

2
β7 = 100

Subtitle Dummy, βμ8 βμ8 ∼ N
³
μβ8 , σ

2
β8

´
μβ8 = 0, σ

2
β8 = 100

σ

Constant σ ∼ TN
³
μσ, σ

2
σμ

´
μσ = 1, σ

2
σμ = 100

Bidder Disutility
Bidder specific constant βCb0j βCb0j ∼ N

³
β̄
Cb
0 , (φCb)−1

´
Hierarchical parameter β̄Cb0 β̄

Cb
0 ∼ N(β

Cb

0 , σ20Cb) β
0

bidder = 1, σ
2
0Cb

= 100

Hierarchical parameter φCb φCb ∼ Gamma(aCb0 , bCb0 ) aCb0 = 0.01, bCb0 = 100

Number of Auctions Attended, βCb1 βCb1 ∼ N
³
μCb1 , σ21Cb

´
μCb1 = 1, σ21Cb = 100

Lapse since last winning, βCb2 βCb2 ∼ N
³
μCb2 , σ22Cb

´
μCb2 = −0.5, σ22Cb = 100

Seller Acquisition Cost
Seller specific constant βCs0i βCs0i ∼ N

³
β̄
Cs
0 , (φCs)−1

´
Hierarchical parameter β̄Cs0 β̄

Cs
0 ∼ N(β

Cs

0 , σ20Cs) β
Cs

0 = 0, σ20Cs = 100

Hierarchical parameter φCs φCs ∼ Gamma(aCs0 , bCs0 ) aCs0 = 0.01, bCb0 = 100

Book value, βCs1 βCs1 ∼ N
³
μCs1 , σ21Cs

´
μCs1 = 1, σ21Cs = 100

Number of Listings, βCs2 βCs2 ∼ TN
³
μCs2 , σ22Cs

´
μCs2 = 3, σ22Cs = 100

Cost Error Variance θ θ ∼ Gamma(aθ0, b
θ
0) aθ0 = 0.01, b

θ
0 = 100

A3.2 The Conditional Posterior for the Seller Acquisition Costs: βCs0i , β̄
Cs
0 , φCs , βCs1 ,

βCs2 , θ and πit

• Let Xqit (qit) = BOOKV AL
βCs1
it q

βCs2
it , Yqit (qit) = qit · (1 − commission)E(Rs

itn|·) − qit · feeit
and �qit = −eCsqit . Then equation (12) can be written as

πit(qit) = qit · (1− commission)E(Rs
itn|·)−Cs

it(qit)− qit · feeit (A-6)

= Yqit (qit)− βCs0i Xqit(qit) + �qit
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Similarly, for a deviation from qit, the profit would be

πit(eqit) = eqit · (1− commission)E(Rs
itn|·)−Cs

it(eqit)− eqit · feeit (A-7)

= Yqit (eqit)− βCs0i Xqit(eqit) + �qit

For each iteration through the sampling chain, a set of latent π (qit) will be drawn from a

normal distribution with mean Yqit (qit)− βCs0i Xqit(qit) and variance (θ)
−1. A set of deviated

profits π (eqit) will be drawn from a truncated normal distribution with mean Yqit (eqit) −
βCs0i Xqit(eqit), variance (θ)−1 and right truncation at π (qit). We consider 20 such eqit and have
found results to be robust to this choice.

• βCs0i

Prior βCs0i ∼ N
³
β̄
Cs
0 , (φCs)−1

´
(A-8)

Likelihood L ∝
Ti,qit 6=qitY

exp

⎛⎜⎝−
h
πit(eqit)− ³Yqit − βCs0i Xqit

´i2
θ

2

⎞⎟⎠
Ti,qitY

exp

⎛⎜⎝−
h
πit(qit)−

³
Yqit − βCs0i Xqit

´i2
θ

2

⎞⎟⎠
exp

⎛⎜⎝−
³
βCs0i − β̄

Cs
0

´2
φCs

2

⎞⎟⎠ (A-9)

Posterior (βCs0i |·) ∼ N(bμCsi , bΣCsi ) (A-10)

bΣCsi = [
¡
Xqi,qi

¢0 ¡
Xqi,qi

¢
θ + φCs ]−1 (A-11)

bμCsi = bΣCsi [¡Xqi,qi

¢0 ¡
πi(qi , eqi)− Yqi,qi

¢
θ + β̄

Cs
0 φCs ] (A-12)

where Ti is the total number of items listed by seller i;
¡
Xqi,qi

¢
is the vector containing

Xqit and Xqit of seller i;
¡
πi(qi , eqi)− Yqi,qi

¢
is a vector containing all (πit(qit)− Yqit) and¡

πit(eqit)− Yqit
¢
of seller i.
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• β̄
Cs
0

Prior β̄Cs0 ∼ N(β
Cs

0 , σ20Cs) (A-13)

Likelihood L ∝
IY

i=1

exp

⎛⎜⎝−
³
βCs0i − β̄

Cs
0

´2
φCs

2

⎞⎟⎠ (A-14)

Posterior (β̄Cs0 |·) ∼ N(λCs ,ΛCs) (A-15)

ΛCs = [σ−20Cs + φCs ]−1 (A-16)

λCs = ΛCs [
X
i

βCs0i φ
Cs + β

Cs

0 /σ20Cs ] (A-17)

where I is the total number of sellers observed.

• φCs

Prior φCs ∼ Gamma(aCs0 , bCs0 ) (A-18)

Likelihood L ∝
IY

i=1

¡
φCs

¢1/2
exp

⎛⎜⎝−
³
βCs0i − β̄

Cs
0

´2
φCs

2

⎞⎟⎠ (A-19)

Posterior (φCs |·) ∼ Gamma(ãCs , b̃Cs) (A-20)

ãCs = I/2 + aCs0 (A-21)

b̃Cs = 2bCs0 [2 + bCs0 · s]−1 (A-22)

s =
IX

i=1

³
βCs0i − β̄

Cs
0

´2
(A-23)

• An updated β
Cs(k)
1 in the k−th iteration is obtained with a random walk proposal density.

For this we use a normal distribution with mean of βCs(k−1)1 from last iteration, variance

σ
βCs1
. The value of σ

βCs1
is determined such that the acceptance rate of proposed values is

between 15%-50% (Roberts (1996)). The proposed β
Cs(k)
1 is accepted with the probability of

κ∗ = min{1, κ}, where

κ =
L(β

Cs(k)
1 |·)p

³
β
Cs(k)
1 |μCs1 , σ21Cs

´
L(β

Cs(k−1)
1 |·)p

³
β
Cs(k−1)
1 |μCs1 , σ21Cs

´ (A-24)
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L(β
Cs(·)
1 |·) denotes the conditional likelihood and

L(β
Cs(·)
1 |·) ∝

Y
t,i,qit 6=qit

exp

⎛⎜⎝−
h
πit(eqit)− ³Yqit − βCs0i Xqit

´i2
θ

2

⎞⎟⎠ (A-25)

Y
t,i

exp

⎛⎜⎝−
h
πit(qit)−

³
Yqit − βCs0i Xqit

´i2
θ

2

⎞⎟⎠ (A-26)

p
³
β
Cs(·)
1 |μCs1 , σ21Cs

´
is the prior density evaluated at βCs(·)1 .

• An updated βCs(k)2 in the k−th iteration is obtained with a random walk proposal density. For

this we use a truncated normal distribution with mean of βCs(k−1)2 from last iteration, variance

σ
βCs2

and left truncated at 1. The value of σ
βCs2

is determined such that the acceptance rate

of proposed values is between 15%-50% (Roberts (1996)). The proposed β
Cs(k)
2 is accepted

with the probability of κ∗ = min{1, κ}, where

κ =
L(β

Cs(k)
2 |·)p

³
β
Cs(k)
2 |μCs2 , σ22Cs

´
ρ(β

Cs(k−1)
2 |βCs(k)2 , σ

βCs2
)

L(β
Cs(k−1)
2 |·)p

³
β
Cs(k−1)
2 |μCs2 , σ22Cs

´
ρ(β

Cs(k)
2 |βCs(k−1)2 , σ

βCs2
)

(A-27)

where L(βCs(·)2 |·) denotes the conditional likelihood and

L(β
Cs(·)
2 |·) ∝

Y
t,i,qit 6=qit

exp

⎛⎜⎝−
h
πit(eqit)− ³Yqit − βCs0i Xqit

´i2
θ

2

⎞⎟⎠ (A-28)

Y
t,i

exp

⎛⎜⎝−
h
πit(qit)−

³
Yqit − βCs0i Xqit

´i2
θ

2

⎞⎟⎠ (A-29)

p
³
β
Cs(·)
2 |μCs2 , σ22Cs

´
is the prior density evaluated at βCs(·)2 .

ρ(·|·) represents the density of the proposal distribution evaluated with β
Cs(k)
2 , β

Cs(k−1)
2 , σ

βCs2

as input and parameters. For example, ρ(βCs(k−1)2 |βCs(k)2 , σ
βCs2
) is the density evaluated at

β
Cs(k−1)
2 with βCs(k)2 and σ

βCs2
as mean and variance, respectively. Note that since the proposal

distribution is truncated at 1 and thus asymmetric, the ratio between the two densities is used

as a weight to obtain the correct acceptance probability.
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• θ

Prior θ ∼ Gamma(aθ0, b
θ
0) (A-30)

Likelihood L ∝
Y

i,t,qit 6=qit

(θ)1/2 exp

⎛⎜⎝−
h
πit(eqit)− ³Yqit − βCs0i Xqit

´i2
θ

2

⎞⎟⎠ (A-31)

Y
i,t

(θ)1/2 exp

⎛⎜⎝−
h
πit(qit)−

³
Yqit − βCs0i Xqit

´i2
θ

2

⎞⎟⎠
Posterior (θ|·) ∼ Gamma(ãπ, bθ0) (A-32)

ãπ = IT
³ eQ+ 1´ /2 + aθ0 (A-33)

bθ0 = 2bθ0[2 + bθ0 · s]−1 (A-34)

s =
X

i,t,qit 6=qit

h
πit(eqit)− ³Yqit − βCs0i Xqit

´i2
(A-35)

+
X
i,t

h
πit(qit)−

³
Yqit − βCs0i Xqit

´i2
(A-36)

A3.3 The Conditional Posterior for the Bidder Valuation Model, βμ, μ, σ, v∗ijtn|Ibid

• βμ

Prior: βμ ∼ N(μβμ ,Σβμ) (A-37)

Likelihood L ∝
Y
i,t,n

exp

Ã
−(μit − Zμ

itβ
μ)
2

2

!
(A-38)

Posterior: (βμ|·) ∼ N(μ̂βμ , Σ̂βμ) (A-39)

with Σ̂βμ = {Σ−1βμ + Zμ0 · Zμ}−1 (A-40)

μ̂βμ = Σ̂βμ{Zμ0 · μ+ Σ−1βμμβμ} (A-41)

where μβμ is a column vector of dimension 8 containing all prior means for β
μ; Σβμ is a 8×8 matrix

with the prior variances of βμ on the diagonal and 0 as off-diagonal elements; μ is a column vector

of the μit across itn with a dimension of ITN ; Z
μ is a the matrix in the dimension of ITN × 8,

containing independent variables determining the valuation distribution mean, μ.
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• v∗ijtn|Ibid

For observations where Ibid = 0 (see Section (4.1)), Theorem 1 indicates that v∗ijtn is drawn from

a right truncated N(μit, σ) with truncation level x
∗
ijtn. This becomes the v

∗
ijtn for all subsequent

items of the same type.

• μ and σ

There is no closed form density for the conditional posterior of μit so we use a random walk

Metropolis algorithm to obtain updated draws through the MCMC chain. A normal distribution is

used as the proposal density. The proposal density has mean μ(k−1)it from (k − 1)−th iteration and

a variance of Σμ. The value of Σμ is determined such that the acceptance rate of proposed values is

between 15%-50%. With the proposal density, an updated value is generated and denoted as μ(k)it .

The proposed μ
(k)
it is accepted with the probability κ∗, where

κ∗ = min{1, κ}

κ =
L(μ

(k)
it |·)

L(μ
(k−1)
it |·)

(A-42)

where the conditional likelihood

L(μ
(·)
it |·) ∝ LbidderLsellerp(μit|Z

μ
it, β

μ) (A-43)

L(μ
(k)
it |·) denotes the conditional likelihood evaluated at μ

(k)
it and L(μ

(k−1)
it |·) is the analogy.

For the sampling of an updated σ, a truncated normal distribution is used as the proposal

density as the variance must be positive. The proposal density has mean σ(k−1), variance Σσ and

left truncated at zero.

κ∗ = min{1, κ}

κ =
L(σ(k)|·)p

³
σ(k)|μσ, σ2σμ

´
ρ(σ(k−1)|σ(k),Σσ)

L(σ(k−1)|·)p
³
σ(k−1)|μσ, σ2σμ

´
ρ(σ(k)|σ(k−1),Σσ)

(A-44)

where the conditional likelihood

L(σ(·)|·) ∝ LbidderLseller (A-45)
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L(σ(k)|·) is the posterior likelihood evaluated at σ(k) and L(σ(k−1)|·) is the analog for σ(k−1).

p
³
σ(k)|μσ, σ2σμ

´
is the prior density evaluated at σ(k) and p

³
σ(k−1)|μσ, σ2σμ

´
is the analog for

σ(k−1). ρ(·|·) represents the density of the proposal distribution evaluated with σ(k), σ(k−1) and

Σσ as input and parameters. For example, ρ(σ(k−1)|σ(k),Σσ) is the density evaluated at σ(k−1)

with σ(k) and Σσ as mean and variance, respectively. Note that since the proposal distribution is

truncated at zero and thus asymmetric, the ratio between the two densities is used as a weight to

obtain the correct acceptance probability.

A3.4 The Conditional Posterior for the Bidder Cost Model, βCb0j , β̄
Cb
0 , φCb , βCb and Cb

ijtn

• βCb0j

Prior βCb0j ∼ N
³
β̄
Cb
0 , (φCb)−1

´
(A-46)

Likelihood L ∝
Y
itn

exp

⎛⎜⎝−
³
logCb

ijtn − βCb0j − ZCb

ijtnβ
Cb
´2

2

⎞⎟⎠ (A-47)

Posterior (βCb0j |·) ∼ N(bμCbj , bΣCbj ) (A-48)

bΣCbj = [ITN + φCb ]−1 (A-49)

bμCbj = bΣCbj [10ITN ³Cb
j − ZCb

j βC
b
´
+ β̄

Cb
0 φCb ] (A-50)

where ITN is the total number of auctions across itn; Cb
j is the vector of the latent (log) costs

of bidder j, having a length of ITN ; ZCb

j is an 2 ∗ ITN matrix containing AttendedAuction

and Lapse; βC
b
is the vector of parameters associated with ZCb

j ; 10ITN is a vector of 1’s with

the length of ITN ;and var(logCb
ijtn) = 1.

• β̄
Cb
0
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Prior β̄Cb0 ∼ N(β
Cb

0 , σ20Cb) (A-51)

Likelihood L ∝
JY

J=1

exp

⎛⎜⎝−
³
βCb0j − β̄

Cb
0

´2
φCb

2

⎞⎟⎠ (A-52)

Posterior (β̄Cb0 |·) ∼ N(λCb ,ΛCb) (A-53)

ΛCb = [σ−20Cb + φCb ]−1 (A-54)

λCb = ΛCb [
X
j

βCb0j φ
Cb + β

Cb

0 /σ20Cb ] (A-55)

where J is the total number of bidders observed.

• φCb

Prior φCb ∼ Gamma(aCb0 , bCb0 ) (A-56)

Likelihood L ∝
JY

j=1

¡
φCb

¢1/2
exp

⎛⎜⎝−
³
βCb0j − β̄

Cb
0

´2
φCb

2

⎞⎟⎠ (A-57)

Posterior (φCb |·) ∼ Gamma(ãCb , b̃Cb) (A-58)

ãCb = J/2 + aCb0 (A-59)

b̃Cb = 2bCb0 [2 + bCb0 · s]−1 (A-60)

s =
JX
j=1

³
βCb0j − β̄

Cb
0

´2
(A-61)

• βC
b

Prior: βC
b ∼ N

¡
μCb ,ΣCb

¢
(A-62)

Likelihood L ∝
Y
ijtn

exp

⎛⎜⎝−
³
logCb

ijtn − βCb0j − ZCb

ijtnβ
Cb
´2

2

⎞⎟⎠ (A-63)

Posterior: (βC
b |·) ∼ N(μ̂βCb , Σ̂βCb ) (A-64)

with Σ̂βCb = {Σ−1Cb + ZCb0 · ZCb}−1 (A-65)

μ̂βCb = Σ̂βCb{ZCb0 ·
³
Cb − βCb0

´
+ Σ−1Cs × μCb} (A-66)
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where ZCb is a matrix containing all the ZCb

ijtn across ijtn and is dimensioned IJTN by 2; Cb is

a column vector containing all log bidder costs across ijtn with a length of IJTN ; βCb0 is a column

vector with a length of IJTN (where βCb0 can be construed as J stacked sub-vectors where the j−th

sub-vector has dimension ITN and βCb0j as its elements); μ
Cb is a 2 by 1 vector of whose elements

contain the prior means for parameters corresponding to ZCb (AttendedAuction and Lapse); and

ΣCb is a 2 by 2 matrix whose diagonal elements contain the prior variances and whose off-diagonals

are zeroes.

• Cb
ijtn

An updated C
b(k)
ijtn in the k−th iteration is obtained with a random walk proposal density with

mean C
b(k)
ijtn from iteration k − 1 and variance σCb . The candidate draw C

b(k)
ijtn is accepted with the

probability of κ∗ = min{1, κ}, where

κ =
L(C

b(k)
ijtn |·)ρ(C

b(k−1)
ijtn |Cb(k)

ijtn , σCb)

L(C
b(k−1)
ijtn |·)ρ(Cb(k)

ijtn |C
b(k−1)
ijtn , σCb)

(A-67)

where L(Cb(·)
ijtn|·) denotes the conditional likelihood and

L(C
b(·)
ijtn|·) ∝ LbidderLsellerp(Cb

ijtn|βCb0j , ZCb

ijtn, β
Cb
) (A-68)

Thus, L(Cb(·)
ijtn|·) is the conditional likelihood evaluated at C

b(k)
ijtn and L(C

b(k−1)
ijtn |·) is the analog at

iteration k − 1.27

ρ(·|·) connotes the density of the proposal distribution evaluated with C
b(k)
ijtn , C

b(k−1)
ijtn , and σCb

as inputs. As the proposal distribution is truncated and asymmetric, the ratio between the two

densities of ρ(Cb(k−1)
ijtn |Cb(k)

ijtn , σCb) and ρ(Cb(k)
ijtn |C

b(k−1)
ijtn , σCb) is used as a weight to obtain the correct

acceptance probability.

A4 Monte Carlo Simulation

We develop a simulated data set designed to reflect our model and data in order to assess whether

the proposed estimation approach can recover true parameters for an arbitrary set of values. The

simulated data have 10 sellers and 100 bidders. Each seller has 2-4 items for sale and makes
27Note that a seller makes decision in Stage 1 before bidder’s decisions. The seller takes the bidder costs distribution

into account when he calculates the expected return. Thus Lseller also appears in the conditional likelihood of Cb
ijtn
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decisions about the optimal number of auctions for each item. The sellers’ optimization results in

a total of 213 auctions in the market. Each bidder then makes decisions about bidding activities.

The true values and estimates of parameters are presented in Table 13 and indicate that the model

is capable of recovering parameters with reasonable accuracy.

Table 13: Monte Carlo Simulation Results

True Value Median 95% Intervals
Valuation Distribution
μ
Constant -4 -3.89* (-4.18, -3.51)
Book Value 1 0.99* (0.83, 1.15)
(Seller Feedback) 0.5 0.49* (0.06, 0.89)
Minimum Bid 0.5 0.51* (0.09, 0.91)
Secret Reserve Dummy 0.5 0.49* (0.25, 0.72)
Store Dummy 0.5 0.50* (0.29, 0.75)
Gallery Picture 0.5 0.50* (0.24, 0.72)
Subtitle 0.5 0.51* (0.32, 0.67)

σ
Constant 2 2.09* (1.98, 2.20)

Bidder Disutility
Number of Auctions Attended 1 0.99* (0.96, 1.02)
Lapse Since Last Winning -0.4 -0.39* (-0.37, -0.41)
Mean of the Individual Constant 2 2.08* (1.36, 2.83)

Seller Acquisition Cost
Book Value 1 0.99* (0.94, 1.05)
Number of Listings 1.5 1.51* (1.44, 1.55)
Cost Error Variance 1 1.10* (0.91, 1.22 )
Mean of the Individual Constant 0.50 0.56* (0.36, 0.88)
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