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Abstract

Uberization promises to transform society based on an intuitive proposition: Advanced peer-

to-peer matching guarantees greater overall efficiency. Here we show a paradox challenging

this proposition in uberized ride-hail service, known as e-hail. By analyzing hundreds of lo-

cal markets in Shenzhen, China, we discover e-hail is outperformed—in terms of wait time

and trip production—by taxis hailed off street in areas with high densities of passengers and

drivers. This paradox arises because a quicker match does not always expedite and enhance a

service. On the contrary, it can induce competition that undermines the network effect, making

a passenger less likely to benefit from more drivers, and vice versa, in e-hail than in taxi ser-

vice. Consequently, simply attracting more users may not improve e-hail’s efficiency (defined

as trip production at a given density of passengers and drivers), because its competitive edge

diminishes with scale. The finding implies uberization has a limited impact on efficiency and is
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unlikely to create a “winner-take-all” in transportation.

Introduction

Thanks to the advance of mobile technology, activities that once depended on physical inter-

actions can now be accomplished at one’s fingertips. This innovation enables consumers and

providers of a service to match on a digital platform in real-time and enjoy a reduced transaction

cost[1, 2]. The launch of Uber set in motion the rapid adoption of this new business model—

known as uberization[3]—in many aspects of our daily life[4, 5, 6]. Users are attracted to a

uberized service platform by the prospect of greater convenience and efficiency, and their accu-

mulation on the platform triggers a cross-side network effect; that is, a larger number of users on

one side of the market makes the service more appealing to users on the other side[7, 8, 9]. In

turn, this effect creates a positive feedback loop that keeps growing the platform and projects a

prospect of “winner-take-all”. Blessed with this virtuous cycle, uberization is expected to trans-

form and even dominate the way many services are provided and consumed[2], which would

have a far-reaching societal impact.

Although uberization continues to gain momentum around the world, whether and when it

will deliver on the above promises remains unclear. Many uberized service platforms, Uber

itself included, have yet to turn a profit[10]. Also, outgrowing others does not seem to ensure

dominance, as big platforms such as Airbnb and Uber have not been able to drive their much

smaller competitors out of the market[11]. Here we show these seeming growing pains of a new

economic paradigm may have a more fundamental cause: The virtuous cycle of uberization is

checked by an efficiency paradox.

We choose to demonstrate the efficiency paradox in the ride-hail industry[12, 13, 14, 15,

16, 17], where uberization originated. Thanks to its advanced matching technology, uberized

ride-hail service, known as the e-hail service, has been praised for less wait time and higher pro-
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ductivity, compared to its antiquated competitor: taxis hailed off street[18, 19]. Yet, few studies

have validated this claim with empirical evidence. Hence, our inquiries start from comparing

the operational performance of e-hail and taxis. The data used in the analysis were collected

in Shenzhen, a megacity in China with more than 13 million residents and a dense urban core

surrounded by an expansive metropolitan area. In 2015, roughly 300,000 daily taxi trips were

served by a fleet of 15,000 taxis, on par with the activities seen in New York City[20]. Several

e-hail services have been launched in Shenzhen since 2014, and the one analyzed in this report

serves a number of daily trips comparable to that of taxis.

Results

Empirical service performance

The data were collected for a full week in 2016. For each day of the week, we first aggregate

the data for two three-hour periods and 277 local markets located in six municipal districts of

the city; see [S1.2] in Supplementary Information and Fig. S1. Fig. 1 examines average wait

time (w̄), vacant vehicle density (Λ), and pickup rate (m) at the district level. Λ consists of

both matched (Λ1) and unmatched (Λ0) vacant vehicles. The former refers to those en route

to pick up passengers, and the latter refers to those waiting to be matched. Hence, for e-hail,

Λ = Λ0 + Λ1, and for taxis, Λ = Λ0. In processing the data, we assume passengers do not

switch between e-hail and taxi after they begin to wait for one mode. Although the data set may

contain such switching incidents, they are rare events that have negligible impact on the results

(see Fig. S2 in Supplementary Information). We also treat the pickup rate as a surrogate for

travel demand, following the traditional assumption of market stability [12, 13, 14, 21, 22, 16].

In our context, the stability requirement is approximately satisfied when data are aggregated

and averaged over a period of time during which temporal variations in market conditions are

insignificant.
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Figure 1: Aggregate service performance of taxis and e-hail by municipal districts. (A) Morning off-peak
period (9:00-12:00). (B) Evening peak period (17:00-20:00). The districts are classified as downtown (D-1 and D-
2), urban (U-1 and U-2), and suburban (S-1 and S-2); see Fig. S1. The solid bars represent average vacant vehicles
per km2 (Λ). For e-hail, the light- and dark-colored portions correspond to matched and unmatched vacant vehicles,
respectively. The bars with diagonal lines represent hourly pickup rate (m). Average wait time (w̄) is presented
as box plots, where the boxes represent the 1st and 3rd quartiles and whiskers denote the highest/lowest datum
within 1.5 IQR (i.e., the difference between the 1st and 3rd quartiles). For e-hail, average wait time is computed as
the time elapsed from the order placement to the driver’s arrival. For taxis, it is not directly observed but inferred
based on calibrated models; see Methods).

Fig. 1 show e-hail produces more pickups than taxis in districts with a relatively low density

of passengers and drivers (e.g., suburbs S-1 and S-2), but falls behind in high-density downtown

districts (i.e., D-1 and D-2). Taxi wait time varies across the districts much more than e-hail,

and is significantly lower in downtown than other districts. What is most surprising, however,

is not that e-hail produces fewer pickups in downtown areas than taxis, but that it does so with

longer average wait and more vacant vehicles. Why does e-hail underperform in high-density

areas, where the network effect is supposed to enhance its efficiency? To answer this question,
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we plot the average wait time in each local market against two surrogates of the market scale:

unmatched vacant vehicles and pickups.

Figs. 2(A) and (C) show that an increase in unmatched vacant vehicles reduces wait time

for both taxis and e-hail. It confirms the network effect from the supply side, that is, bringing

more drivers to the market benefits passengers. A closer look yields two observations. First, the

taxi wait time is more sensitive to the change in supply. Second, e-hail lowers the likelihood

of long waits (about 88% of e-hail markets have a 90th percentile wait time shorter than 10

minutes, compared to only 40% for taxis; see Fig. S2). On the demand side, Fig. 2(B) reveals

that average wait time for a taxi decreases as pickups increase, which indicates the demand-side

network effect exists for taxis (i.e., the service gets better as more people use it). However,

e-hail displays a puzzling picture: As the pickups grow, average wait time trends up mildly;

see Fig. 2(D). This unexpected finding prompts us to hypothesize that the network effect is

undermined by a counter force in e-hail.

Observed returns to scale

To test the above hypothesis, we analogize ride-hail to a process of trip production. The inputs to

the production are waiting passengers and vacant vehicles, and the output is the trips (pickups).

Using this analogy, the network effect can be measured by the production’s returns to scale,

that is, the rate of increase in output relative to the associated increase in the inputs. A positive

(negative) network effect corresponds to increasing (decreasing) returns to scale; that is, the

production increases more (less) than the proportional change in all inputs. We model the trip

production using the Cobb-Douglas function[23], which has been widely used in studies on taxi

market[24, 25, 26, 27, 28, 29, 30, 31]:

m = β(ΛΠ)α, (1)
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Figure 2: Relationship between average wait time, unmatched vacant vehicle density, and pickup rate. Each
data point represents one local market at a given time period. The dark-gray areas are drawn with the 1st and 3rd
quartiles of datum aggregated at an interval of 20/km2 for free vacant vehicles and 200/km2/hr for the pickup rate.
The light-gray areas represent the same aggregated data within 1.5 IQR.

where m is the hourly pickup rate (/km2/hr); Λ is the density of vacant vehicles (/km2); Π is

the density of all waiting passengers (/km2); β is the total factor productivity (TFP), determined

by the production technology (i.e. the ride-hail’s matching technology in this case); and α is

the output elasticity to Λ and Π, which measures the sensitivity of production with respect to

a change in inputs. For simplicity and to better demonstrate the finding, we assume Λ and Π

have the same elasticity. The main finding stands the same when this assumption is relaxed (see

Supplementary Information).

The classic economic theory states that a production displays constant/increasing/decreasing

returns to scale, when 2α is equal to/greater than/less than 1. We fit the linear equation log(m) =

log β + α[log(Λ) + log(Π)] with estimates derived from the data for both taxi and e-hail. As
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shown in Fig. 3, e-hail’s productivity is higher than that of taxis’ by a factor of β̂ehail/β̂taxi '

15.89, thanks to its significantly better matching technology. However, its trip production dis-

plays less than constant returns to scale (2α̂ ' 0.9), suggesting the overall network effect is

negligible, if not negative. This finding is in sharp contrast to the taxis’ production function,

which shows strong increasing returns to scale (2α̂ ' 1.6).
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Figure 3: Empirical production functions for taxis and e-hail. Each data point represents one local market at a
given time period. The fitted linear equations are reported at the lower-right corner, along with their goodness-of-fit
R2. The intercept measures the logarithm of TFP : log β̂taxi = −0.0744, log β̂ehail = 1.1267; the slope measures
the output elasticity: α̂taxi = 0.7860, α̂ehail = 0.4569. Compared to taxis, e-hail enhances TFP by 1,489%
(β̂ehail/β̂taxi ' 15.89), but lowers returns to scale by more than 40% (α̂ehail/α̂taxi ' 0.58), approaching constant
returns to scale (2α̂ehail ' 0.9 < 1). By contrast, taxis displays increasing returns to scale (2α̂taxi ' 1.6 > 1).

Spatial matching mechanism

The above empirical evidence indicates e-hail is not an unequivocal winner in the ride-hail

industry. Equipped with better matching technology, e-hail mitigates passengers’ exposure to

long waits and significantly increases trip production in low-density areas. However, as e-hail

attempts to scale up to serve more passengers, its efficiency is compromised by the loss of the

network effect. In what follows, we show, paradoxically, the very technology that gives e-hail
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its advantages is also responsible for breaking the virtuous cycle of uberization.

Our theory centers on a passenger’s ability to reach unmatched vacant vehicles around her;

see Fig. 4. Assume the unmatched vacant vehicles distribute randomly in space with a density

Λ0. As the passenger gradually expands the search radius r, the number of unmatched vacant

vehicles increases at the rate of 2πrΛ0; see Methods. However, the passenger can only be

matched with a fraction of these vehicles, denoted as p(r), which is determined by a certain

matching mechanism. Accordingly, we define λ(r) = 2πrΛ0p(r) as the matching rate at r.

A

C

B

D

Waiting passenger

Effective hail area

Unmatched vacant vehicle

Matched vacant vehicle

Connected vehicle

Matchable vehicle

Figure 4: Illustration of the passenger-driver matching mechanism. (A) In a low-density area, none of the five
vacant vehicles around the taxi passenger is matched with her. A matching occurs only if a taxi is projected to
enter the passenger’s hail area (the small red circle; see Methods for details). (B) In a low-density area, e-hail’s
matching technology expands the passenger’s hail area dramatically. Hence, all four unmatched vacant vehicles
are matchable for her. (C) Higher density improves taxi passengers’ matching probability through the network
effect. Only two out of nine passengers fail to find a matched vehicle. (D) Higher density forces the nine e-
hail passengers to compete for the same eight unmatched vacant vehicles. The competition leaves one passenger
without any matchable vacant vehicle.

If the passenger hails a taxi off street, the fraction of matchable vacant vehicles p(r) is

limited by the maximum distance from which she can effectively communicate with a driver
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through eye contact or gesture. This distance is called the hail radius (denoted as d), which

defines a circular hail area centered at the passenger’s waiting location; see Figs. 4(A) and

(C). Using simple geometry, we show p(r) can be approximated by (σd)/(2πr), where σ is a

correction factor that measures the attractiveness of the passenger’s waiting location to nearby

vacant taxis; see Methods. In the case of e-hail, p(r) is no longer restricted by the hail radius,

but rather by the density of passengers waiting to be matched (Π0 ≤ Π) and the efficiency of

the matching algorithm (measured by a parameter k); see Figs. 4(B) and (D). We thus propose

to approximate p with k/Π0, assuming waiting passengers distribute randomly in the space and

hence evenly share the unmatched vacant vehicles.

Efficiency paradox of e-hail

Suppose the passenger is picked up by the closest matchable vacant vehicle at r upon her arrival.

Then, the passenger’s wait time is w = δr/v, where v is the cruising speed of vacant vehicles

and δ is a constant detour factor dependent on the topology of the road network[32]. With mild

assumptions, we show the cumulative distribution function (CDF) of passenger wait time is

F (t) = 1− exp

(
−
∫ t

0

λ
(vw
δ

) v
δ

dw

)
; (2)

see Methods. Here, λw = λ(vw/δ) can be interpreted as the matching rate with respect to a

wait time w. For taxi, λw = Λ0dσ, independent of w; for e-hail, λw increases with w linearly,

that is λw = (2πkΛ0/Π0)(vw/δ). Because an e-hail passenger enjoys a greater matching rate

as she waits longer, her exposure to a long wait is better mitigated than that of a taxi passenger.

We attribute this advantage to e-hail’s matching technology that effectively pushes the hail ra-

dius to infinity. This very advantage, however, is a mixed blessing. With an infinite hail radius,

e-hail drags every waiting passenger into a competition for the same pool of unmatched vacant

vehicles. The more passengers e-hail tries to serve, the stronger the competition and the smaller

the average matching rate. Ironically, taxis are almost immune to such a competition, precisely
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because their hail radius is relatively small and does not create enough overlaps between pas-

sengers’ hail areas. Consequently, although the network effect benefits taxis, it is neutralized in

e-hail.

Theoretical validation of observations

We proceed to validate the theory using the empirical findings presented earlier. Based on Eq.

(2), the average wait time for taxis and e-hail can be derived respectively as

w̄taxi =
δ

σΛ0dv
=

δ

σΛdv
; w̄ehail =

δ

2v

√
Π0

kΛ0

' δ

2v

√
Π

kΛ
, (3)

where d, σ, v, and k can be calibrated from data for each local market; see Methods. Hence,

ceteris paribus, average wait time decreases as vacant vehicle density (Λ) increases in both

services, yet the sensitivity is stronger in taxis than in e-hail (w̄taxi ∝ 1/Λ and w̄ehail ∝ 1/
√

Λ).

This result is consistent with the observations in Figs. 2(A) and (C). Furthermore, as per Little’s

formula [33], at the stationary state, the passenger arrival rate within a unit area, m, equals

the average number of waiting passengers divided by average wait time, namely, m = Π/w̄.

Replacing Π in Eq. (3) with mw̄ yields w̄taxi ∝ 1/m and w̄ehail ∝ m. Again, the theory

prediction agrees with the empirical observations in Figs. 2(B) and (D).

Using the same stationary-state condition, the analytical Cobb-Douglas production function

can be derived as follows:

mtaxi =
σdv

δ
ΠΛ; mehail =

2v
√
k

δ

√
ΠΛ. (4)

Eq. (4) implies taxi displays increasing returns to scale (both Λ and Π have an exponent α = 1,

so 2α = 2), whereas e-hail has constant returns to scale (both Λ and Π have an exponent

α = 0.5, so 2α = 1). This prediction matches well with the empirical results reported in Fig. 3,

which show the returns to scale is 1.6 for taxis and 0.9 for e-hail. Eq. (4) also suggests e-hail’s

productivity is higher than that of taxis’ by a factor of βehail/βtaxi = 2
√
k/(σd). We estimate
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2
√
k/(σd) ' 23.4 with empirical results d ' 36 m, σ ' 1.5 and k ' 0.4; see Fig. S3. As

a comparison, Fig. 3 shows the ratio between the productivity of e-hail and taxis is about 16,

which is a reasonable agreement.

Conclusions

To summarize, the analysis above reveals two opposing forces at work. On the one hand, aided

by advanced matching technology, an e-hail passenger can access more vacant vehicles and is

guaranteed to be matched with one at a greater rate as her wait time increases. In low-density

areas, this advantage dramatically improves efficiency and lowers the likelihood of unpleas-

antly long waits. On the other hand, the technology is also trapped in an efficiency paradox.

Connecting a large number of waiting passenger to the same pool of unmatched vacant vehicles

induces competitions that undercuts the network effect and weakens the overall efficiency of the

trip production. This negative impact is most prominent in high-density areas, where efficiency

matters the most.

What lessons can we learn from this efficiency paradox? First, although uberization does

bring many positive changes to ride-hail, it has not made the industry much more efficient.

Like taxis, hailing a ride with one’s smart phone is unlikely to dominate public transportation.

Second, the uberized transportation industry may not see a “winner-take-all.” Simply scaling up

may not help e-hail become more efficient, because the lack of a positive network effect leads to

nearly constant returns to scale. Therefore, consumers can expect a variety of services provided

by multiple firms with different value propositions.

We close by noting ride-hail is unlikely the only industry prone to the impact of the ef-

ficiency paradox. After all, the key insight here is simple and universal: Unless the service

itself can be rendered more efficiently (e.g., by capacity sharing), quick match may only bring

competition that undermines the overall efficiency. Uberization is continuing to reshape our
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everyday life, from grocery shopping (e.g., InstaCart), fund raising (e.g., GoFundMe) to edu-

cation (e.g., VipKid). Therefore, it is important to understand which industries the paradox is

likely to affect, the extent to which they are affected, and in what manner. We hope this work

motivates others to examine this issue further, and that our theory finds applications beyond its

domain.

Methods

Fraction of matchable vacant vehicle

The fraction of matchable vacant vehicles, denoted as p(r), represents the main difference be-

tween taxis and e-hail in terms of matching. For taxis, a vacant vehicle is considered matchable

if it satisfies: (i) it is cruising towards the passenger; i.e., its heading has an acute angle with

its direction to the passenger (α < π/2 in Fig. 5); (ii) it is traveling on the same side of the

road as the passenger; i.e., its heading has an acute angle with the passenger’s travel direction

(β < π/2 in Fig. 5); and (iii) either it is in the passenger’s effective hail area (Fig. 5(D)),

or it will eventually enter the passenger’s effective hail area if it continues on its current path

(Fig. 5(E)).
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A B C D E

Figure 5: Illustration of matchable vacant taxi. (A) A vehicle that satisfies conditions (i) and (ii). (B) A vehicle
violates condition (i). (C) A vehicle violates condition (ii). (D) A matchable vehicle inside the effective hail area.
(E) A matchable vehicle outside the effective hail area.

Accordingly, the fraction of matchable vehicles p(r) given EHD d can be derived with

12



respect to r using simple geometry [34].

p(r) =

{
1
4

r ≤ d
1

2π
arcsin(d/r) r > d

(5)

Consider the rare possibility of observing a matchable vehicle inside the effective hail area

upon the passenger’s arrival, we only use the second case of Eq. (5) in model calibration. Fur-

ther, because the pickup vehicle is often far away from the passenger as he arrives, we apply the

approximation arcsin(d/r) ≈ d/r, which finally yields p(r) = d/(2πr).

Distribution of passenger wait time

The passenger wait time is derived from a physical model of passenger–driver matching process.

Consider the moment when a passenger arrives. We define a counting process Ñ(r) as the

number of unmatched vacant vehicles within a distance r from the passenger. Assume (i) all

unmatched vacant vehicles are cruising at the same speed v, (ii) unmatched vacant vehicles are

uniformly distributed with spatial density Λ, and (iii) the passenger keeps waiting at the same

location until finally being picked up. Then, we prove that Ñ(r) is an Inhomogeneous Poisson

Process with intensity function η(r) = 2πΛ0r [34].

For each unmatched vacant vehicle at distance r from the passenger, p(r) determines the

probability that the vehicle is matchable for the passenger. Because the matchability of one ve-

hicle is independent of that of others, Ñ(r) can be split into two independent sub-processes,

corresponding to counting matchable and unmatchable vehicles. Therefore, the number of

matchable vehicles, denoted as Ñ1(r), is also an Inhomogeneous Poisson Process with intensity

function η1(r) = 2πΛ0rp(r).

Suppose the passenger is picked up by the closest matchable vehicle, and denote D̃ as its

distance to the passenger at the time when she enters the market. Then, the passenger wait time

w̃ = δD̃/v, where δ is a constant detour factor that corrects the vehicle’s travel distance prior

13



to the pickup. Accordingly,

P (w̃ ≤ t) = 1− P (Ñ1(vt/δ) = 0) = 1− exp

[
−
∫ t

0

2πΛ0v
2w

δ2
p(vw/δ)dw

]
. (6)

Plugging in p(r) = (σd)/(2πr), Λ = Λ0 for taxis and p(r) = k/Π0, Λ/Π ' Λ0/Π0 for e-hail,

we finally derive the CDF of passenger wait time in each service as

F taxi(t) = 1− exp

(
−σΛdv

δ
t

)
; (7)

F ehail(t) = 1− exp

(
−πkΛv2t2

δ2Π

)
, (8)

which yield the average wait time in Eq. (3).

Local ride-hail market

To calibrate the model, we need properly specify a local market. In this study, a local market

for a given ride-hail service is defined by the combination of a core area and a time period. We

select 277 core areas, each corresponding to one or several traffic analysis zones (TAZ) defined

by the city’s urban planning agency. Two time periods—a morning off-peak period (10 AM–12

PM) and an evening peak period (5 PM–8 PM) are selected. Thus, in total we create 277×2

local markets for each service. It should be noted that the demand and supply in each local

market are not necessarily confined by the physical boundary of the core area. Instead, they

are defined differently for taxis and e-hail, according to the operational characteristics of these

services.

For taxis, we consider the demand as all pickups in the core area, and for each pickup, we

define a “supply area” centered at the pickup location. The size of the supply area is selected to

cover matchable vehicles within a reasonable distance, thus it often goes beyond the core area.

For simplicity, in this study we set the supply area to be a square centered at the pickup location

with an area of about 1 km2. The reader is referred to [34] for more details about the supply

area.
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To specify the supply area for e-hail, we first find the centroid of all pickup locations

recorded inside the core area, and then, centering at that point, draw a circle with a radius

equal to 90th percentile of all pickup distances (the green circle in Fig. 6). Defining the demand

is more complicated, because a passenger waiting in the core area may compete with those

both inside and outside the supply area. For example, the passenger outside the supply area is

competing with passengers in the study area as he/she may be closer to a vacant vehicle in the

supply area; see Fig. 6(B). Therefore, we need to consider waiting passengers in an even larger

area, called the “competing area” (the orange circle in Fig. 6). The competing area is defined

as a circle that is concentric with the supply area but doubles its radius. Accordingly, waiting

passengers in the competing area who compete for vacant vehicles in the supply area contribute

to the demand in this local market, which will be further specified in the following section.

𝑅

2𝑅

𝐿

𝑃

Λ

Π

𝑅

2𝑅

𝐿
𝑃

Λ

Π

A. Passenger inside supply area B. Passenger outside supply area

Core area Supply area Competing area

Figure 6: Illustration of the local e-hail market. (A) Potential competing passenger inside the supply area. (B)
Potential competing passenger outside the supply area.

Aggregate measures

Given the definition of demand and supply, three aggregate measures are estimated in each local

market, i.e., vacant vehicle density Λ, waiting passenger density Π and pickup ratem. For taxis,

15



the vacant vehicle density is estimated in the same way as described in (22), which is equivalent

to the unmatched vacant vehicle density, i.e., Λ = Λ0. Waiting passenger density and pickup

rate are given by

Π =
1

µHC

N∑
i=1

ti; m =
N

µHC
, (9)

where H is the length of analysis time period, N is the number of pickups observed in the core

area within H , µ is the sample rate (see [S1.2] in Supplementary Information for more details),

ti is the passenger wait time of ith pickup, and C is the core area. Since the exact passenger

wait time is not available from the taxi data, multiple random draws are first taken based on the

calibrated model. For each draw, we compute Π from Eq. (9), then the sample average is used

as the final estimate.

For e-hail, the unmatched vacant vehicle density Λ0 is directly obtained from data. Es-

timating matched vacant vehicle density Λ1 and waiting passenger density, however, is more

complicated and has to be addressed in the competing area. For each pickup observed in the

competing area, we need to determine (i) the probability that the pickup is associated with the

local market, denoted as p, and (ii) when p > 0, how much it contributes to the matched vacant

vehicle density, which is quantified by Pc, a fraction of its pickup distance. Since the pickup

trajectories are not observed, we propose different approximations of p and Pc based on the

potential competing passenger’s pickup location. See [S1.1] in Supplementary Information for

details.

Given the specification of p and Pc for each pickup, the waiting passenger density and

matched vacant vehicle density are finally estimated as

Π =
1

µHπR2

Nc∑
i=1

tipi, Λ1 =
1

µHπR2

Nc∑
i=1

ti
P i
c

pi
, (10)

where N c is the number of pickups observed in the competing area.
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Finally, two different pickup rates are computed for e-hail. In Fig. 1 and 2, pickup rates are

computed in core areas so that the magnitude of the rates is comparable to that for taxis, i.e.

they are measured for exactly the same area. In Fig. 3, the pickup rates for e-hail are computed

with respect to each local market, i.e.,

mc =
1

µHπR2

Nc∑
i=1

pi. (11)

This is necessary because here we aim to examine the production function of local markets.

To that end, the output of the local market must include all pickups associated with it (not just

those in its core area), as clarified in the above explanation.

Calibration of taxi model

The taxi model is calibrated using taxi GPS trajectory data. See [S1.2] in Supplementary Infor-

mation for more details. Because the exact passenger wait time of each pickup is not directly

observed from the available data of taxis, we develop a method to extract the maximum possible

wait time. We prove that, under mild conditions, the maximum possible wait time follows the

same distribution of passenger wait time given the EHD value. Using this important property, d

and σ can be estimated using an iterative algorithm [34].

A critical step in the calibration is to construct the empirical mapping from each possible

wait time to the maximum possible EHD. In short, we determine the upper bound of EHD by

the distance from the pickup location to the pickup vehicle during its cruising phase (when it

must not be engaged with the passenger) and to the closest other matchable vehicles, which

requires trajectories of all vacant vehicles. However, in practice we do not always have full

access to the data or sometimes there is a considerable amount of errors in the data. Here we

show the passenger maximum wait time can still be properly estimated when trajectory data are

incomplete.
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Assume that: (i) observed and unobserved vacant vehicles are randomly and independently

distributed in the supply area with density Λo and Λu, respectively; (ii) all other parameters, i.e.

v, d and σ, are the same among observed and unobserved vacant vehicles; and (iii) the ratio

between unobserved and observed vacant vehicles is known, denoted by µ. Following the same

derivation as in [34], we can prove that the number of observed and unobserved matchable

vehicles within a distance r from the passenger, denoted by Ñ o
1 and Ñu

1 , are Homogeneous

Poisson Processes with intensity functions ηo1 = Λod and ηu1 = Λud, respectively, Thanks to

the independence, Ñ o
1 and Ñu

1 merge into a Homogeneous Poisson Process Ñ1 with intensity

η1 = (Λo + Λu)d = (1 + µ)Λod. Accordingly, the average wait time is

E[w̃s] =
δ

σvΛd
=

δ

σv(1 + µ)Λod
. (12)

The main difficulty lies in building the empirical mapping g, as we no longer observe the ex-

act distance from the closest other matchable taxi to the pickup location. Given a possible wait

time w, we denote doM and duM as the distance from the closest observed and unobserved match-

able taxi to the passenger, respectively. In essence, we need the maximum possible EHD as

dM = min{Do
M , D

u
M}. Due to the missing data, we approximate DM by taking its expectation

E[dM ] = doMP (doM < duM) + E[duM |doM ≥ duM ]P (doM ≥ duM) (13)

= doMe
−2σΛuddoM +

(1− e−σΛuddoM )2

σΛud
.

Therefore, E[dM ] is well bounded between doM and 1/(σΛod), and the gap between the lower

and upper bounds grows as d, σ or µ increases, because there would be a larger probability mass

for small realizations of duM . Examples of observed and corresponding expected maximum EHD

are illustrated in Fig. 7).

Since computing E[dM ] requires d and σ, we develop an iterative calibration algorithm with

two loops. The inner-loop performs the calibration procedure introduced in (22), while d̂ and
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Figure 7: Sample empirical mappings with and without consideration of missing data. The other parameters
are Λ = 46.93 /km2, v = 2.5 m/s, µ = 0.8315, d = 15 m and σ = 1.0.

σ̂, as well as the empirical mapping, are updated in the outer-loop. The initial estimates are

generated without consideration of the missing data. d̂ and σ̂ are then updated by

d̂kout = d̂k−1
out + ι(d̂k−1

in − d̂k−1
out ), (14)

σ̂kout = σ̂k−1
out + ι(σ̂k−1

in − σ̂k−1
out ), (15)

where (̂·)in, (̂·)out are estimates in the inner- and outer-loop, respectively, and ι is a constant

moving step (set to be 0.5 in this study).

Calibration of e-hail model

The e-hail model is calibrated using a random sample of trip records and cruising time of un-

committed vacant vehicles aggregated in each period and spatial units. See [S1.2] in Supple-

mentary Information for more details. Given the estimates of Λ and Π as per Eq. (10), the two

parameters remained to be calibrated are the cruising speed v and the matching parameter k.

For simplicity, v is estimated by the average pickup velocity of all pickups observed in the core
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area. From Eq. (8), we derive the probability density function of passenger wait time as

f ehail(t) =
2πkΛv2t

δ2Π
exp

(
−πkΛv2t2

δ2Π

)
. (16)

Accordingly, the log-likelihood function of k is constructed as

L(k) = log
N∏
i=1

f ehail(ti)

=
N∑
i=1

log

(
2πΛ̂v̂2ti

δ2Π̂

)
+N log k − πkΛ̂v̂2

δ2Π̂

N∑
i=1

(ti)2. (17)

where ti is the observed passenger wait time of the ith pickup.

Maximizing Eq. (17) thus yields the maximum log-likelihood estimator for k as

k̂ =
Nδ2Π̂

πΛ̂v̂2
∑N

i=1(ti)2
. (18)

Data Availability

The processed data that supports the findings of this study are available from the corresponding

author upon reasonable request.

References

[1] Ronald Harry Coase. The nature of the firm. economica, 4(16):386–405, 1937.

[2] Gerald F Davis. What might replace the modern corporation: Uberization and the web

page enterprise. Seattle UL Rev., 39:501, 2015.

[3] Nabyla Daidj. Uberization (or uberification) of the economy. In Advanced Methodologies

and Technologies in Digital Marketing and Entrepreneurship, pages 116–128. IGI Global,

2018.

20



[4] Georgios Zervas, Davide Proserpio, and John W Byers. The rise of the sharing economy:

Estimating the impact of airbnb on the hotel industry. Journal of marketing research,

54(5):687–705, 2017.

[5] Hanna Halaburda, Mikołaj Jan Piskorski, and Pınar Yıldırım. Competing by restricting

choice: The case of matching platforms. Management Science, 64(8):3574–3594, 2017.

[6] Fabio Caldieraro, Jonathan Z Zhang, Marcus Cunha Jr, and Jeffrey D Shulman. Strate-

gic information transmission in peer-to-peer lending markets. Journal of Marketing,

82(2):42–63, 2018.

[7] Song Yao and Carl F Mela. Online auction demand. Marketing Science, 27(5):861–885,

2008.

[8] Marc Rysman. The economics of two-sided markets. Journal of economic perspectives,

23(3):125–43, 2009.

[9] Catherine Tucker and Juanjuan Zhang. Growing two-sided networks by advertising the

user base: A field experiment. Marketing Science, 29(5):805–814, 2010.

[10] Michael A Cusumano. The sharing economy meets reality. Communications of the ACM,

61(1):26–28, 2017.

[11] Zack Guzman. Why lyft’s ipo may be more attractive than uber’s. Yahoo Finance, March

2019.

[12] George W Douglas. Price regulation and optimal service standards: The taxicab industry.

Journal of Transport Economics and Policy, pages 116–127, 1972.

[13] Richard Arnott. Taxi travel should be subsidized. Journal of Urban Economics,

40(3):316–333, 1996.

21



[14] Hai Yang and SC Wong. A network model of urban taxi services. Transportation Research

Part B: Methodological, 32(4):235–246, 1998.

[15] Liteng Zha, Yafeng Yin, and Hai Yang. Economic analysis of ride-sourcing markets.

Transportation Research Part C: Emerging Technologies, 71:249–266, 2016.

[16] Juan Castillo, Daniel T Knoepfle, and E Glen Weyl. Surge pricing solves the wild goose

chase. Available at SSRN 2890666, 2018.

[17] Gregory D Erhardt, Sneha Roy, Drew Cooper, Bhargava Sana, Mei Chen, and Joe Cas-

tiglione. Do transportation network companies decrease or increase congestion? Science

advances, 5(5):eaau2670, 2019.

[18] Judd Cramer and Alan B Krueger. Disruptive change in the taxi business: The case of

uber. American Economic Review, 106(5):177–82, 2016.

[19] Eduardo M Azevedo and E Glen Weyl. Matching markets in the digital age. Science,

352(6289):1056–1057, 2016.

[20] Yu Marco Nie. How can the taxi industry survive the tide of ridesourcing? evidence from

shenzhen, china. Transportation Research Part C: Emerging Technologies, 79:242–256,

2017.

[21] John R Schroeter. A model of taxi service under fare structure and fleet size regulation.

The Bell Journal of Economics, pages 81–96, 1983.

[22] Siddhartha Banerjee, Carlos Riquelme, and Ramesh Johari. Pricing in ride-share plat-

forms: A queueing-theoretic approach. Available at SSRN 2568258, 2015.

[23] Charles W Cobb and Paul H Douglas. A theory of production. American Economic

Review, 18:139–165, 1928.

22



[24] Hai Yang, Cowina WY Leung, SC Wong, and Michael GH Bell. Equilibria of bilat-

eral taxi–customer searching and meeting on networks. Transportation Research Part B:

Methodological, 44(8):1067–1083, 2010.

[25] Hai Yang and Teng Yang. Equilibrium properties of taxi markets with search frictions.

Transportation Research Part B: Methodological, 45(4):696–713, 2011.

[26] Teng Yang, Hai Yang, and Sze Chun Wong. Taxi services with search frictions and con-

gestion externalities. Journal of Advanced Transportation, 48(6):575–587, 2014.

[27] Fang He and Zuo-Jun Max Shen. Modeling taxi services with smartphone-based e-hailing

applications. Transportation Research Part C: Emerging Technologies, 58:93–106, 2015.

[28] Xiaolei Wang, Fang He, Hai Yang, and H Oliver Gao. Pricing strategies for a taxi-hailing

platform. Transportation Research Part E: Logistics and Transportation Review, 93:212–

231, 2016.

[29] Fang He, Xiaolei Wang, Xi Lin, and Xindi Tang. Pricing and penalty/compensation strate-

gies of a taxi-hailing platform. Transportation Research Part C: Emerging Technologies,

86:263–279, 2018.

[30] Mehdi Nourinejad and Mohsen Ramezani. Ride-sourcing modeling and pricing in non-

equilibrium two-sided markets. Transportation Research Part B: Methodological, 2019.

[31] Hai Wang and Hai Yang. E-hailing ride-sourcing systems : A framework and review.

2019.

[32] Hai Yang, Jintao Ke, and Jieping Ye. A universal distribution law of network detour ratios.

Transportation Research Part C: Emerging Technologies, 96:22–37, 2018.

23



[33] John DC Little. A proof for the queuing formula: L= λ w. Operations research, 9(3):383–

387, 1961.

[34] Hongyu Chen, Kenan Zhang, and Yu Marco Nie. A physical model of street ride-hail.

Available at SSRN 3318557, 2018.

Acknowledgments

This work is partially supported by the National Science Foundation under the award number

PFI:BIC 1534138 and by National Science Foundation of China (NSFC) under the award num-

ber 71671147. L.X., J.G., X.L. collected the data; K.Z., H.C., S.Y., Y.N. analyzed the data;

H.C., K.Z., Y.N. developed and calibrated the model. Y.N. supervised the project. All au-

thors contributed to writing the manuscript. Correspondence and requests for materials should

be addressed to Y.N. (y-nie@northwestern.edu). We wish to thank Professors Kimberly Gray,

Luis Amaral, Julio Ottino, Dashun Wang and Ian Savage at Northwestern University, Professor

Emeritus Ken Small at University of California Irvine, and Professor Kathleen Vohs at Univer-

sity of Minnesota for their helpful comments on earlier versions of the paper.

Author contributions

K.Z. analyzed the data, developed and calibrated the model, and contributed to writing the

manuscript; H.C. analyzed the data, developed and calibrated the model, and contributed to

writing the manuscript; S.Y. analyzed the data and contributed to writing the manuscript; L.X.

collected the data and contributed to writing the manuscript; J.G. collected the data and con-

tributed to writing the manuscript; X.L. collected the data and contributed to writing the manuscript;

Y.N. analyzed the data, developed and calibrated the model, supervised the project, and con-

tributed to writing the manuscript

24



Competing interests

The authors declare no competing financial interests.

Material & correspondence

Correspondence and requests for materials should be addressed to Y.N. (y-nie@northwestern.edu).

Supplementary Information

Supplementary Text

Fig. S1. Distribution of selected core areas in Shenzhen.

Fig. S2. Histogram of 90-percentile passenger wait time in each local market.

Fig. S3. Main results of model calibration.

Fig. S4. Cases of potential competing passenger inside the supply area of an e-hail local

market.

Fig. S5. Cases of potential competing passenger outside the supply area of an e-hail local

market.

Fig. S6. Simple validation of estimated average passenger wait time.

25



Supplementary Information for
An efficiency paradox of uberization

Kenan Zhang, Hongyu Chen∗, Song Yao, Linli Xu, Jiaoju Ge,
Xiaobo Liu, Yu (Marco) Nie

Correspondence to: y-nie@northwestern.edu.

This PDF file includes:

1. Supplementary Text

2. Fig. S1. Distribution of selected core areas in Shenzhen.

3. Fig. S2. Histogram of 90-percentile passenger wait time in each local market.

4. Fig. S3. Main results of model calibration.

5. Fig. S4. Cases of potential competing passenger inside the supply area of an e-hail local

market.

6. Fig. S5. Cases of potential competing passenger outside the supply area of an e-hail local

market.

7. Fig. S6. Simple validation of estimated average passenger wait time.

∗These authors contributed equally to the work .

1



S1 Supplementary Text

S1.1 Scenarios of potential competing passengers in e-hail local markets

Consider a pickup in the competing area (orange circle in Figs. S4 and S5). Let P be the pickup

distance, L be the distance from the pickup location to the center of the market, and R be the

radius of supply area. We specify the probability of the pickup belonged to the local market (p)

and the pickup distance contributing to the matched vacant vehicle density (Pc) for the following

two cases, each of which has three subcases.

1. The pickup is located inside the supply area, i.e., L ≤ R.

(a) P ≤ R − L (Fig. S4(A)): In this subcase, the pickup vehicle must start inside the

supply area. Hence, the passenger associated with the pickup is definitely part of

the demand in the market and the entire pickup distance should be counted in the

matched vacant vehicle density, i.e., p = 1 and Pc = P .

(b) P > R+L (Fig. S4(B)): In this subcase, the pickup vehicle starts outside the supply

area. Hence, the passenger did not compete for the supply inside the supply area of

the market. Then pickup event has no contribution to either demand or supply. p = 0

and Pc = 0.

(c) R−L < P ≤ R+L (Fig. S4(C)): In this subcase, the pickup may or may not start

inside the supply area. The probability that it starts inside can be computed as p =

θ1/π, where θ1 can be solved by the law of cosine (i.e.,R2 = L2+P 2−2LP cos θ1).

Accordingly, the contribution of the pickup distance to the matched vacant vehicle

density is Pc = Pθ1/π.

2. The pickup is located outside the supply area, i.e., L ≤ R.
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(a) P ≤ L − R (Fig. S5(A)): In this subcase, the pickup vehicle must start outside the

supply area. As per the argument in 1(b), p = 0 and Pc = 0.

(b) P > L+R (Fig. S5(B)): p = 0 and Pc = 0 for the same reason as in 1(b).

(c) L − R < P ≤ L + R (Fig. S5(C)): Similar to 1(c), the probability that the

pickup vehicle starts inside the supply area is θ1/π. However, only a fraction

of the pickup distance is covered by the supply area. To be consistent with the

estimate of matched vacant vehicle density, we count a cropped distance P ′ =

P − L cos θ +
√
R2 − (L sin θ)2, and approximate the average of P ′ by

P̄ ′ =
1

π

∫ θ1

0

(
P − L cos θ +

√
R2 − (L sin θ)2

)
dθ (S1)

≈ θ1
π
P − sin θ1

π
L+

1

π

√
θ21

(
R2 − L2

2

)
+
θ1 sin 2θ1

4
L2.

Hence, the contribution of the pickup distance to the matched vacant vehicle density

is given by Pc = P̄ ′θ1/π.

S1.2 Data Description

The data of both taxis and e-hail services are collected in Shenzhen, China for a week in 2016.

The taxi data consist of GPS trajectories of all registered taxis in the city over the study period

with an average inter-record interval of 20 seconds. Each GPS record contains information

including taxi license ID, time stamp, coordinates, instantaneous speed and heading, and pas-

senger occupancy status (0/1 variable). Using the procedure described in (18), trajectories are

first segmented according to flips in the occupancy status, generating 250 to 300 thousand daily

occupied trips. The e-hail data consist of a random sample of trip records and cruising time of

uncommitted vacant vehicles aggregated in each time period and spatial unit. The trip records

are randomly selected with a sample rate of 6%, producing about 45 thousand trips per day.
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Each trip record includes coordinates of the trip origin and destination, order placement time,

driver arrival time, trip starting/ending time, pickup distance, etc.

S1.3 Main calibration results

Fig. S3 reports main calibration results. EHD estimates narrowly range between 30-45 meters,

with a median of 36 meters across all local markets. σ estimates range between 1 and 3, with

a median of about 1.5. These findings well match the physical meaning of the two parameters

in the taxi model. As for e-hail, estimated values for the matching efficiency parameter k vary

significant across the markets, from as low as close to zero to as high as more than 3. However,

no correlation with the waiting passenger density is noticed. The median of k is about 0.415.

Fig. S6 compares the estimated and observed average passenger wait times for the purpose of

validation. It shows that e-hail models tend to have better goodness-of-fit, likely because the

data used in their calibration are of higher quality (they are actual observations of passenger

wait time). As expected, a lower sample rate leads to worse goodness-of-fit; see Fig. S6(B).

S1.4 A more general regression for the empirical Cobb-Douglas function

In the main text we present the regression results of the Cobb-Douglas function with the as-

sumption that the elasticities of both Π and λ are the same (denoted as α). Here, we present

the results of an regression analysis without that assumption. The linearized Cobb-Douglas

function reads

logm = log β + α1 log Λ + α2 log Π, (S2)

where α1 and α2 are elasticity for Λ (supply) and Π (demand), respectively. Table S1 reports

the results and compares them with those from Fig. 3 in the main text.

The results show that the sum of the two distinctive elasticities obtained from the regression

equal 1.48 (0.88) for taxi (e-hail), compared to 1.57 (0.91) obtained from Fig. 3. In addition,
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Table S1: Main regression results

Mode α̂1 α̂2 β̂ R2 α̂1 + α̂2 2α̂
Taxi 0.5240 0.9634 0.1710 0.801 1.4874 1.5720
Ehail 0.2052 0.6760 1.2011 0.911 0.8812 0.9138

the ratio of the total factor productivity between e-hail and taxi is 10.72, compared to 15.89

reported in Fig. 3. Thus, the main findings remain the same: taxi displays strong increasing

returns to scale whereas e-hail is slightly less than constant returns to scale; and the TFP of

e-hail is about an order magnitude higher than that of taxi.
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Figure S1: Distribution of selected core areas in Shenzhen. The 277 core areas are dis-
tributed in the six municipal districts in Shenzhen.
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Figure S2: Histogram of 90-percentile passenger wait time in each local market. (A)
Taxi; and (B) e-hail. The two distributions demonstrate distinctive features, which suggest
that switching between the two modes after waiting begins is relative rare (otherwise, the two
distributions would be more similar to each other).
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